Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44476 by abdo.msup.com last updated on 29/Sep/18

let f(x) =∫_0 ^∞     (dt/(t^2  +2xt−1))  1)find a explicit form of f(x)  2) cslvulste ∫_0 ^∞     (dt/(t^2  +t−1))  3)calculate A(θ)=∫_0 ^∞    (dt/(t^2  +2tan(θ)t −1))  4) calculate g(x)=∫_0 ^∞   ((tdt)/((t^2  +2xt−1)^2 ))  5)find the value of ∫_0 ^∞     ((tdt)/((t^2  +4t−1)^2 ))

letf(x)=0dtt2+2xt11)findaexplicitformoff(x)2)cslvulste0dtt2+t13)calculateA(θ)=0dtt2+2tan(θ)t14)calculateg(x)=0tdt(t2+2xt1)25)findthevalueof0tdt(t2+4t1)2

Commented by maxmathsup by imad last updated on 01/Oct/18

1) we have f(x) =∫_0 ^∞    (dt/(t^2  +2xt+x^2 −x^2 −1))  = ∫_0 ^∞      (dt/((t+x)^2 −(x^2  +1))) =∫_0 ^∞     (dt/((t+x+(√(1+x^2 )))(t+x−(√(1+x^2 )))))  =(1/(2(√(1+x^2 )))) ∫_0 ^∞    ((1/(t+x−(√(1+x^2 )))) −(1/(t+x +(√(1+x^2 )))))dt  =(1/(2(√(1+x^2 ))))[ln∣((t+x−(√(1+x^2 )))/(t+x+(√(1+x^2 ))))]_0 ^(+∞)   =(1/(2(√(1+x^2 ))))(−ln∣((x−(√(1+x^2 )))/(x+(√(1+x^2 ))))∣)  ⇒f(x)=(1/(2(√(1+x^2 ))))ln∣((x+(√(1+x^2 )))/(x−(√(1+x^2 ))))∣ .

1)wehavef(x)=0dtt2+2xt+x2x21=0dt(t+x)2(x2+1)=0dt(t+x+1+x2)(t+x1+x2)=121+x20(1t+x1+x21t+x+1+x2)dt=121+x2[lnt+x1+x2t+x+1+x2]0+=121+x2(lnx1+x2x+1+x2)f(x)=121+x2lnx+1+x2x1+x2.

Commented by maxmathsup by imad last updated on 01/Oct/18

2) ∫_0 ^∞      (dt/(t^2  +t −1)) =f((1/2)) = (1/(2(√(1+(1/4)))))ln∣(((1/2)+(√(1+(1/4))))/((1/2)−(√(1+(1/4)))))∣  =(1/(√5))ln(((1+(√5))/((√5)−1))) .

2)0dtt2+t1=f(12)=121+14ln12+1+14121+14=15ln(1+551).

Commented by maxmathsup by imad last updated on 01/Oct/18

3) we have ∫_0 ^∞     (dt/(t^2 −2tanθ t −1)) =f(tanθ)  = (1/(2(√(1+tan^2 θ))))ln∣((tanθ +(√(1+tan^2 θ)))/(tanθ −(√(1+tan^2 θ))))∣  =((∣cosθ∣)/2)ln∣ ((tanθ +(1/(∣cosθ∣)))/(tanθ−(1/(∣cosθ∣))))∣ =((∣cosθ∣)/2)ln∣((ξ(θ)sinθ +1)/(ξ(θ)−1)) ∣ with ξ(θ)=((cosθ)/(∣cosθ∣)) =+^− 1

3)wehave0dtt22tanθt1=f(tanθ)=121+tan2θlntanθ+1+tan2θtanθ1+tan2θ=cosθ2lntanθ+1cosθtanθ1cosθ=cosθ2lnξ(θ)sinθ+1ξ(θ)1withξ(θ)=cosθcosθ=+1

Commented by maxmathsup by imad last updated on 01/Oct/18

4) we have f(x) =∫_0 ^∞     (dt/(t^2 +2x t −1)) ⇒f^′ (x) = −∫_0 ^∞  ((2t)/((t^2  +2xt −1)^2 ))dt ⇒  ∫_0 ^∞      (t/((t^2  +2xt −1)^2 ))dt =−(1/2)f^′ (x)  f(x)=(1/2)(1+x^2 )^(−(1/2)) {ln∣x+(√(1+x^2 ))∣−ln∣x−(√(1+x^2 ))∣}⇒  f^′ (x) =((−x)/2)(1+x^2 )^(−(3/2)) {ln∣x+(√(1+x^2 ∣))−ln∣x−(√(1+x^2 ))∣}  +(1/(2(√(1+x^2 )))) {   ((1+(x/(√(1+x^2 ))))/(x+(√(1+x^2 )))) −((1−(x/(√(1+x^2 ))))/(x−(√(1+x^2 ))))}  =−(x/(2(1+x^2 )(√(1+x^2 )))){ ln∣x+(√(1+x^2 ))−ln∣x−(√(1+x^2 ))∣}  +(1/(2(√(1+x^2 )))){  (1/(√(1+x^2 ))) +(1/(√(1+x^2 )))} ⇒g(x) =(x/(2(1+x^2 )(√(1+x^2 ))))ln∣((x+(√(1+x^2 )))/(x−(√(1+x^2 ))))∣  +(1/(1+x^2 ))

4)wehavef(x)=0dtt2+2xt1f(x)=02t(t2+2xt1)2dt0t(t2+2xt1)2dt=12f(x)f(x)=12(1+x2)12{lnx+1+x2lnx1+x2}f(x)=x2(1+x2)32{lnx+1+x2lnx1+x2}+121+x2{1+x1+x2x+1+x21x1+x2x1+x2}=x2(1+x2)1+x2{lnx+1+x2lnx1+x2}+121+x2{11+x2+11+x2}g(x)=x2(1+x2)1+x2lnx+1+x2x1+x2+11+x2

Commented by maxmathsup by imad last updated on 01/Oct/18

5) ∫_0 ^∞    ((tdt)/((t^2  +4t−1)^2 )) =g(2)  = (1/(10(√5)))ln∣((2+(√5))/(2−(√5)))∣−(1/(10)) .

5)0tdt(t2+4t1)2=g(2)=1105ln2+525110.

Commented by maxmathsup by imad last updated on 01/Oct/18

g(x)=−(1/2)f^′ (x) ⇒ g(x) =(x/(4(1+x^2 )(√(1+x^2 ))))ln∣((x+(√(1+x^2 )))/(x−(√(1+x^2 ))))∣−(1/(2(1+x^2 )))

g(x)=12f(x)g(x)=x4(1+x2)1+x2lnx+1+x2x1+x212(1+x2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com