Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44515 by maxmathsup by imad last updated on 30/Sep/18

let g(x) =∫_0 ^∞    ((t ln(t)dt)/((1+xt)^3 )) with x>0  1) give a explicit form of g(x)  2) calculate ∫_0 ^∞    ((t ln(t))/((1+t)^3 ))dt  3) calculate ∫_0 ^∞  ((tln(t))/((1+2t)^3 )) dt  4) calculate A(θ) =∫_0 ^∞   ((t ln(t))/((1+t sinθ)^3 ))dt  with  0<θ<(π/2)

$${let}\:{g}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right){dt}}{\left(\mathrm{1}+{xt}\right)^{\mathrm{3}} }\:{with}\:{x}>\mathrm{0} \\ $$ $$\left.\mathrm{1}\right)\:{give}\:{a}\:{explicit}\:{form}\:{of}\:{g}\left({x}\right) \\ $$ $$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{3}} }{dt} \\ $$ $$\left.\mathrm{3}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+\mathrm{2}{t}\right)^{\mathrm{3}} }\:{dt} \\ $$ $$\left.\mathrm{4}\right)\:{calculate}\:{A}\left(\theta\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+{t}\:{sin}\theta\right)^{\mathrm{3}} }{dt}\:\:{with}\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}} \\ $$

Answered by maxmathsup by imad last updated on 02/Oct/18

1) let f(x) =∫_0 ^∞   ((ln(t))/((1+tx)^2 ))dt  we have proved that f(x)=−((ln(x))/x)  ⇒f^′ (x) = −∫_0 ^∞    ((2t(1+tx)ln(t))/((1+tx)^4 )) =−∫_0 ^∞  ((2tln(t))/((1+tx)^3 ))dt ⇒  g(x) =−(1/2)f^′ (x) but f^′ (x) =−((1−ln(x))/x^2 ) ⇒g(x)=((1−ln(x))/(2x^2 ))  2) ∫_0 ^∞    ((tln(t))/((1+t)^3 )) =g(1)=0  3) ∫_0 ^∞   ((t ln(t))/((1+2t)^3 ))dt =g(2) =((1−ln(2))/8)  4)∫_0 ^∞   ((tln(t))/((1+tsinθ)^3 ))dt =g(sinθ) =((1−ln(sinθ))/(2sin^2 θ)) .

$$\left.\mathrm{1}\right)\:{let}\:{f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{ln}\left({t}\right)}{\left(\mathrm{1}+{tx}\right)^{\mathrm{2}} }{dt}\:\:{we}\:{have}\:{proved}\:{that}\:{f}\left({x}\right)=−\frac{{ln}\left({x}\right)}{{x}} \\ $$ $$\Rightarrow{f}^{'} \left({x}\right)\:=\:−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{t}\left(\mathrm{1}+{tx}\right){ln}\left({t}\right)}{\left(\mathrm{1}+{tx}\right)^{\mathrm{4}} }\:=−\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{2}{tln}\left({t}\right)}{\left(\mathrm{1}+{tx}\right)^{\mathrm{3}} }{dt}\:\Rightarrow \\ $$ $${g}\left({x}\right)\:=−\frac{\mathrm{1}}{\mathrm{2}}{f}^{'} \left({x}\right)\:{but}\:{f}^{'} \left({x}\right)\:=−\frac{\mathrm{1}−{ln}\left({x}\right)}{{x}^{\mathrm{2}} }\:\Rightarrow{g}\left({x}\right)=\frac{\mathrm{1}−{ln}\left({x}\right)}{\mathrm{2}{x}^{\mathrm{2}} } \\ $$ $$\left.\mathrm{2}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+{t}\right)^{\mathrm{3}} }\:={g}\left(\mathrm{1}\right)=\mathrm{0} \\ $$ $$\left.\mathrm{3}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}\:{ln}\left({t}\right)}{\left(\mathrm{1}+\mathrm{2}{t}\right)^{\mathrm{3}} }{dt}\:={g}\left(\mathrm{2}\right)\:=\frac{\mathrm{1}−{ln}\left(\mathrm{2}\right)}{\mathrm{8}} \\ $$ $$\left.\mathrm{4}\right)\int_{\mathrm{0}} ^{\infty} \:\:\frac{{tln}\left({t}\right)}{\left(\mathrm{1}+{tsin}\theta\right)^{\mathrm{3}} }{dt}\:={g}\left({sin}\theta\right)\:=\frac{\mathrm{1}−{ln}\left({sin}\theta\right)}{\mathrm{2}{sin}^{\mathrm{2}} \theta}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com