Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 44543 by ajfour last updated on 01/Oct/18

If  y =f(x) = ax^2 +bx+c  and  at some x, say  x= p  ∫_0 ^(  p) ydx = y(p)= y ′(p) = y ′′(p)= p ,  then find p .

$${If}\:\:{y}\:={f}\left({x}\right)\:=\:{ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${and}\:\:{at}\:{some}\:{x},\:{say}\:\:{x}=\:{p} \\ $$$$\int_{\mathrm{0}} ^{\:\:{p}} {ydx}\:=\:{y}\left({p}\right)=\:{y}\:'\left({p}\right)\:=\:{y}\:''\left({p}\right)=\:{p}\:, \\ $$$${then}\:{find}\:\boldsymbol{{p}}\:. \\ $$

Commented by MrW3 last updated on 01/Oct/18

y′(x)=2ax+b  y′′(x)=2a  2a=p⇒a=(p/2)  2×(p/2)×p+b=p⇒b=p(1−p)  (p/2)×p^2 +p(1−p)×p+c=p  ⇒c=p−p^2 +(p^3 /2)  ∫_0 ^p ydx=(a/3)×p^3 +(b/2)×p^2 +cp=p  (a/3)×p^2 +(b/2)×p+c=1  (p/6)×p^2 +((p(1−p))/2)×p+p−p^2 +(p^3 /2)=1  (p^3 /6)+(p^2 /2)−(p^3 /2)+p−p^2 +(p^3 /2)=1  (p^3 /6)−(p^2 /2)+p=1  p^3 −3p^2 +6p−6=0  ⇒p≈1.6

$${y}'\left({x}\right)=\mathrm{2}{ax}+{b} \\ $$$${y}''\left({x}\right)=\mathrm{2}{a} \\ $$$$\mathrm{2}{a}={p}\Rightarrow{a}=\frac{{p}}{\mathrm{2}} \\ $$$$\mathrm{2}×\frac{{p}}{\mathrm{2}}×{p}+{b}={p}\Rightarrow{b}={p}\left(\mathrm{1}−{p}\right) \\ $$$$\frac{{p}}{\mathrm{2}}×{p}^{\mathrm{2}} +{p}\left(\mathrm{1}−{p}\right)×{p}+{c}={p} \\ $$$$\Rightarrow{c}={p}−{p}^{\mathrm{2}} +\frac{{p}^{\mathrm{3}} }{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{{p}} {ydx}=\frac{{a}}{\mathrm{3}}×{p}^{\mathrm{3}} +\frac{{b}}{\mathrm{2}}×{p}^{\mathrm{2}} +{cp}={p} \\ $$$$\frac{{a}}{\mathrm{3}}×{p}^{\mathrm{2}} +\frac{{b}}{\mathrm{2}}×{p}+{c}=\mathrm{1} \\ $$$$\frac{{p}}{\mathrm{6}}×{p}^{\mathrm{2}} +\frac{{p}\left(\mathrm{1}−{p}\right)}{\mathrm{2}}×{p}+{p}−{p}^{\mathrm{2}} +\frac{{p}^{\mathrm{3}} }{\mathrm{2}}=\mathrm{1} \\ $$$$\frac{{p}^{\mathrm{3}} }{\mathrm{6}}+\frac{{p}^{\mathrm{2}} }{\mathrm{2}}−\frac{{p}^{\mathrm{3}} }{\mathrm{2}}+{p}−{p}^{\mathrm{2}} +\frac{{p}^{\mathrm{3}} }{\mathrm{2}}=\mathrm{1} \\ $$$$\frac{{p}^{\mathrm{3}} }{\mathrm{6}}−\frac{{p}^{\mathrm{2}} }{\mathrm{2}}+{p}=\mathrm{1} \\ $$$${p}^{\mathrm{3}} −\mathrm{3}{p}^{\mathrm{2}} +\mathrm{6}{p}−\mathrm{6}=\mathrm{0} \\ $$$$\Rightarrow{p}\approx\mathrm{1}.\mathrm{6} \\ $$

Commented by MrW3 last updated on 01/Oct/18

thanks for checking sir!

$${thanks}\:{for}\:{checking}\:{sir}! \\ $$

Commented by ajfour last updated on 01/Oct/18

yes sir, it is correct there, i dint  notice properly, please pardon.  Thank you.

$${yes}\:{sir},\:{it}\:{is}\:{correct}\:{there},\:{i}\:{dint} \\ $$$${notice}\:{properly},\:{please}\:{pardon}. \\ $$$${Thank}\:{you}. \\ $$

Answered by ajfour last updated on 01/Oct/18

p=2a=2ap+b=ap^2 +bp+c       = ((ap^3 )/3)+((bp^2 )/2)+cp  ⇒  ap^2 +bp+c = p    ..(i)  ⇒ ((ap^2 )/3)+((bp)/2)+c = 1     ..(ii)  (i)−(ii) gives  ((2ap^2 )/3)+((bp)/2) = p−1  , and we already  have    2ap+b = p  with 2a=p ,   b=p−p^2   So    (p^3 /3)+(p/2)(p−p^2 )=p−1  ⇒  (p^3 /6)−(p^2 /2)+p−1 = 0  or   p^3 −3p^2 +6p−6 =0  let p = t+1  ⇒  t^3 +3t+1−6t−3+6t = 0  ⇒  t^3 +3t−2 =0  let  t=u+v  ⇒  u^3 +v^3 +3(u+v)(uv+1)= 2  further let uv=−1  then   u^3 +v^3  = 2  u^3 , v^3  are roots of quadratic       z^2 −2z−1= 0     z = 1±(√2)    t= u+v = ((√2)+1)^(1/3) −((√2)−1)^(1/3)     p = t+1 ≈ 1.59607164

$${p}=\mathrm{2}{a}=\mathrm{2}{ap}+{b}={ap}^{\mathrm{2}} +{bp}+{c} \\ $$$$\:\:\:\:\:=\:\frac{{ap}^{\mathrm{3}} }{\mathrm{3}}+\frac{{bp}^{\mathrm{2}} }{\mathrm{2}}+{cp} \\ $$$$\Rightarrow\:\:{ap}^{\mathrm{2}} +{bp}+{c}\:=\:{p}\:\:\:\:..\left({i}\right) \\ $$$$\Rightarrow\:\frac{{ap}^{\mathrm{2}} }{\mathrm{3}}+\frac{{bp}}{\mathrm{2}}+{c}\:=\:\mathrm{1}\:\:\:\:\:..\left({ii}\right) \\ $$$$\left({i}\right)−\left({ii}\right)\:{gives} \\ $$$$\frac{\mathrm{2}{ap}^{\mathrm{2}} }{\mathrm{3}}+\frac{{bp}}{\mathrm{2}}\:=\:{p}−\mathrm{1}\:\:,\:{and}\:{we}\:{already} \\ $$$${have}\:\:\:\:\mathrm{2}{ap}+{b}\:=\:{p} \\ $$$${with}\:\mathrm{2}{a}={p}\:,\:\:\:{b}={p}−{p}^{\mathrm{2}} \\ $$$${So}\:\:\:\:\frac{{p}^{\mathrm{3}} }{\mathrm{3}}+\frac{{p}}{\mathrm{2}}\left({p}−{p}^{\mathrm{2}} \right)={p}−\mathrm{1} \\ $$$$\Rightarrow\:\:\frac{\boldsymbol{{p}}^{\mathrm{3}} }{\mathrm{6}}−\frac{\boldsymbol{{p}}^{\mathrm{2}} }{\mathrm{2}}+\boldsymbol{{p}}−\mathrm{1}\:=\:\mathrm{0} \\ $$$${or}\:\:\:{p}^{\mathrm{3}} −\mathrm{3}{p}^{\mathrm{2}} +\mathrm{6}{p}−\mathrm{6}\:=\mathrm{0} \\ $$$${let}\:{p}\:=\:{t}+\mathrm{1} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{3}} +\mathrm{3}{t}+\mathrm{1}−\mathrm{6}{t}−\mathrm{3}+\mathrm{6}{t}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\:{t}^{\mathrm{3}} +\mathrm{3}{t}−\mathrm{2}\:=\mathrm{0} \\ $$$${let}\:\:{t}={u}+{v} \\ $$$$\Rightarrow\:\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} +\mathrm{3}\left({u}+{v}\right)\left({uv}+\mathrm{1}\right)=\:\mathrm{2} \\ $$$${further}\:{let}\:{uv}=−\mathrm{1} \\ $$$${then}\:\:\:{u}^{\mathrm{3}} +{v}^{\mathrm{3}} \:=\:\mathrm{2} \\ $$$${u}^{\mathrm{3}} ,\:{v}^{\mathrm{3}} \:{are}\:{roots}\:{of}\:{quadratic} \\ $$$$\:\:\:\:\:\boldsymbol{{z}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{z}}−\mathrm{1}=\:\mathrm{0} \\ $$$$\:\:\:\boldsymbol{{z}}\:=\:\mathrm{1}\pm\sqrt{\mathrm{2}} \\ $$$$\:\:{t}=\:{u}+{v}\:=\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} −\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\boldsymbol{{p}}\:=\:{t}+\mathrm{1}\:\approx\:\mathrm{1}.\mathrm{59607164} \\ $$

Commented by MrW3 last updated on 01/Oct/18

I knew you′ll give the exact solution,  thanks for the perfect result!

$${I}\:{knew}\:{you}'{ll}\:{give}\:{the}\:{exact}\:{solution}, \\ $$$${thanks}\:{for}\:{the}\:{perfect}\:{result}! \\ $$

Commented by ajfour last updated on 01/Oct/18

thanks mrW Sir (for Cardano′s).

$${thanks}\:{mrW}\:{Sir}\:\left({for}\:{Cardano}'{s}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com