Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44587 by maxmathsup by imad last updated on 01/Oct/18

calculate ∫_0 ^∞    (dt/(1+t^(2018) ))

calculate0dt1+t2018

Commented by tanmay.chaudhury50@gmail.com last updated on 02/Oct/18

Commented by prof Abdo imad last updated on 02/Oct/18

changement t =x^(1/(2018))  give  ∫_0 ^∞     (dt/(1+t^(2018) )) =∫_0 ^∞   (1/(2018))  (x^((1/(2018))−1) /(1+x))dx  =(1/(2018)) ∫_0 ^∞    (x^((1/(2018))−1) /(1+x))dx =(1/(2018)) (π/(sin((π/(2018)))))  =(π/(2018sin((π/(2018)))))  i have used the result ∫_0 ^∞  (t^(a−1) /(1+t))dt =(π/(sin(πa)))  with0<a<1 .

changementt=x12018give0dt1+t2018=012018x1201811+xdx=120180x1201811+xdx=12018πsin(π2018)=π2018sin(π2018)ihaveusedtheresult0ta11+tdt=πsin(πa)with0<a<1.

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Oct/18

=area under the curve=2×1=2  so ans is (1/2)×2=1 because limit of intregal from  0 to ∞

=areaunderthecurve=2×1=2soansis12×2=1becauselimitofintregalfrom0to

Terms of Service

Privacy Policy

Contact: info@tinkutara.com