Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 44612 by rahul 19 last updated on 02/Oct/18

Prove that One factor of determinant (((a^2 +x),(  ab),(  ac)),((  ab),(b^2 +x),(  cb)),((  ca),(  cb),(c^2 +x))) is x^2 .

$${Prove}\:{that}\:\mathrm{One}\:\mathrm{factor}\:\mathrm{of}\begin{vmatrix}{{a}^{\mathrm{2}} +{x}}&{\:\:{ab}}&{\:\:{ac}}\\{\:\:{ab}}&{{b}^{\mathrm{2}} +{x}}&{\:\:{cb}}\\{\:\:{ca}}&{\:\:{cb}}&{{c}^{\mathrm{2}} +{x}}\end{vmatrix}\:\mathrm{is}\:{x}^{\mathrm{2}} . \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Oct/18

Commented by $@ty@m last updated on 02/Oct/18

it is correct.  but it is expected to use properties  of determinant to solve problems  of determinant chapter.

$${it}\:{is}\:{correct}. \\ $$$${but}\:{it}\:{is}\:{expected}\:{to}\:{use}\:{properties} \\ $$$${of}\:{determinant}\:{to}\:{solve}\:{problems} \\ $$$${of}\:{determinant}\:{chapter}. \\ $$

Commented by rahul 19 last updated on 02/Oct/18

Yes sir, i want this Q. to be solved by  properties.  (Although thanks for this also).

$${Yes}\:{sir},\:{i}\:{want}\:{this}\:{Q}.\:{to}\:{be}\:{solved}\:{by} \\ $$$${properties}. \\ $$$$\left({Although}\:{thanks}\:{for}\:{this}\:{also}\right). \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 02/Oct/18

let △=x^2 f(a,b,c)  now using factor theorem  p(x)=(x−α)q(x)  p(α)=0  that means x−α is s factor of p(x)  using same principle we put x=0 in △  nxt take common from 1st row   b from second row  c from third row..  it is clear that three row identical   so △=0  hence proved...

$${let}\:\bigtriangleup={x}^{\mathrm{2}} {f}\left({a},{b},{c}\right) \\ $$$${now}\:{using}\:{factor}\:{theorem} \\ $$$${p}\left({x}\right)=\left({x}−\alpha\right){q}\left({x}\right) \\ $$$${p}\left(\alpha\right)=\mathrm{0}\:\:{that}\:{means}\:{x}−\alpha\:{is}\:{s}\:{factor}\:{of}\:{p}\left({x}\right) \\ $$$${using}\:{same}\:{principle}\:{we}\:{put}\:{x}=\mathrm{0}\:{in}\:\bigtriangleup \\ $$$${nxt}\:{take}\:{common}\:{from}\:\mathrm{1}{st}\:{row}\: \\ $$$${b}\:{from}\:{second}\:{row} \\ $$$${c}\:{from}\:{third}\:{row}.. \\ $$$${it}\:{is}\:{clear}\:{that}\:{three}\:{row}\:{identical}\: \\ $$$${so}\:\bigtriangleup=\mathrm{0} \\ $$$${hence}\:{proved}... \\ $$

Answered by math1967 last updated on 02/Oct/18

  abc  determinant (((a+(x/a)),b,c),(a,(b+(x/b)),c),(a,b,(c+(x/(c )) )))  =abc determinant (((x/a),(−(x/b)  ),0),(0,(x/b),(−(x/c))),(a,b,(c+(x/c))))R_1 ′→R_1 −R_2   ,R_(2 ) ′→R_(2 ) −R_3        abcx^2  determinant (((1/a),(−(1/b)),0),(0,(1/b),(−(1/c))),(a,b,(c+(x/c))))  ((abcx^2 )/(ab)) determinant ((1,(−1),0),(0,1,(−(1/c))),(a^2 ,b^2 ,(c+(x/c))))  cx^2  determinant ((1,0,0),(0,1,(−(1/c))),(a^2 ,(a^2 +b^2 ),(c+(x/c))))C_2 ′→C_1 +C_(2 )   cx^2 {1×(c+(x/c))+((a^2 +b^2 )/c)}  =x^2 (x+a^2 +b^2 +c^2 )  ∴x^2  is factor...

$$\:\:{abc}\:\begin{vmatrix}{{a}+\frac{{x}}{{a}}}&{{b}}&{{c}}\\{{a}}&{{b}+\frac{{x}}{{b}}}&{{c}}\\{{a}}&{{b}}&{{c}+\frac{{x}}{{c}\:}\:}\end{vmatrix} \\ $$$$={abc}\begin{vmatrix}{\frac{{x}}{{a}}}&{−\frac{{x}}{{b}}\:\:}&{\mathrm{0}}\\{\mathrm{0}}&{\frac{{x}}{{b}}}&{−\frac{{x}}{{c}}}\\{{a}}&{{b}}&{{c}+\frac{{x}}{{c}}}\end{vmatrix}{R}_{\mathrm{1}} '\rightarrow{R}_{\mathrm{1}} −{R}_{\mathrm{2}} \:\:,{R}_{\mathrm{2}\:} '\rightarrow{R}_{\mathrm{2}\:} −{R}_{\mathrm{3}} \\ $$$$\:\:\:\:\:{abcx}^{\mathrm{2}} \begin{vmatrix}{\frac{\mathrm{1}}{{a}}}&{−\frac{\mathrm{1}}{{b}}}&{\mathrm{0}}\\{\mathrm{0}}&{\frac{\mathrm{1}}{{b}}}&{−\frac{\mathrm{1}}{{c}}}\\{{a}}&{{b}}&{{c}+\frac{{x}}{{c}}}\end{vmatrix} \\ $$$$\frac{{abcx}^{\mathrm{2}} }{{ab}}\begin{vmatrix}{\mathrm{1}}&{−\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{−\frac{\mathrm{1}}{{c}}}\\{{a}^{\mathrm{2}} }&{{b}^{\mathrm{2}} }&{{c}+\frac{{x}}{{c}}}\end{vmatrix} \\ $$$${cx}^{\mathrm{2}} \begin{vmatrix}{\mathrm{1}}&{\mathrm{0}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{1}}&{−\frac{\mathrm{1}}{{c}}}\\{{a}^{\mathrm{2}} }&{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }&{{c}+\frac{{x}}{{c}}}\end{vmatrix}{C}_{\mathrm{2}} '\rightarrow{C}_{\mathrm{1}} +{C}_{\mathrm{2}\:} \\ $$$${cx}^{\mathrm{2}} \left\{\mathrm{1}×\left({c}+\frac{{x}}{{c}}\right)+\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{c}}\right\} \\ $$$$={x}^{\mathrm{2}} \left({x}+{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$\therefore{x}^{\mathrm{2}} \:{is}\:{factor}... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by rahul 19 last updated on 02/Oct/18

thanks sir ����.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com