Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 44652 by rahul 19 last updated on 02/Oct/18

Prove that lim_(x→0)  (((1+ax)^(1/b) −1)/x) = (a/b).

$${Prove}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}}{{x}}\:=\:\frac{{a}}{{b}}. \\ $$

Commented by rahul 19 last updated on 02/Oct/18

without using L−hospital rule.

$${without}\:{using}\:{L}−{hospital}\:{rule}. \\ $$

Commented by maxmathsup by imad last updated on 02/Oct/18

we have (1+ax)^(1/b)   ∼1+(a/b)x   (x→0) ⇒  (1+ax)^(1/b)  −1 ∼(a/b)x  (x→0) ⇒(((1+ax)^(1/b)  −1)/x) ∼(a/b) ⇒  lim_(x→0)  (((1+ax)^(1/b)  −1)/x) =(a/b) .

$${we}\:{have}\:\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} \:\:\sim\mathrm{1}+\frac{{a}}{{b}}{x}\:\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow \\ $$$$\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} \:−\mathrm{1}\:\sim\frac{{a}}{{b}}{x}\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} \:−\mathrm{1}}{{x}}\:\sim\frac{{a}}{{b}}\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} \:−\mathrm{1}}{{x}}\:=\frac{{a}}{{b}}\:. \\ $$

Commented by rahul 19 last updated on 02/Oct/18

thanks prof Abdo.

$${thanks}\:{prof}\:{Abdo}. \\ $$

Commented by maxmathsup by imad last updated on 02/Oct/18

you are welcome sir.

$${you}\:{are}\:{welcome}\:{sir}. \\ $$

Answered by math1967 last updated on 02/Oct/18

x^(lim) →0 ((a{(1+ax)^(1/b) −1})/(ax))  a  ^(lim) x→0  (((1+ax)^(1/b) −1)/(ax))  (a/b) proved   [ ^(Lim) x→0 (((1+x)^n −1)/x) (  n=any rational..)                                              =n]

$$\overset{{lim}} {{x}}\rightarrow\mathrm{0}\:\frac{{a}\left\{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}\right\}}{{ax}} \\ $$$${a}\:\overset{{lim}} {\:}{x}\rightarrow\mathrm{0}\:\:\frac{\left(\mathrm{1}+{ax}\right)^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}}{{ax}} \\ $$$$\frac{{a}}{{b}}\:{proved}\:\:\:\left[\overset{{Lim}} {\:}{x}\rightarrow\mathrm{0}\:\frac{\left(\mathrm{1}+{x}\right)^{{n}} −\mathrm{1}}{{x}}\:\left(\:\:{n}={any}\:{rational}..\right)\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={n}\right] \\ $$

Commented by rahul 19 last updated on 02/Oct/18

thanks sir.

$${thanks}\:{sir}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Oct/18

t=1+ax   x→0    t→1  lim_(t→1)  ((a(t^(1/b) −1))/(t−1))     a×(1/b)×(1)^((1/b)−1)   =(a/b)

$${t}=\mathrm{1}+{ax}\:\:\:{x}\rightarrow\mathrm{0}\:\:\:\:{t}\rightarrow\mathrm{1} \\ $$$$\underset{{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{a}\left({t}^{\frac{\mathrm{1}}{{b}}} −\mathrm{1}\right)}{{t}−\mathrm{1}}\:\:\: \\ $$$${a}×\frac{\mathrm{1}}{{b}}×\left(\mathrm{1}\right)^{\frac{\mathrm{1}}{{b}}−\mathrm{1}} \\ $$$$=\frac{{a}}{{b}} \\ $$

Commented by rahul 19 last updated on 02/Oct/18

thanks sir.

$${thanks}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com