Question and Answers Forum

All Questions      Topic List

Optics Questions

Previous in All Question      Next in All Question      

Previous in Optics      Next in Optics      

Question Number 44676 by ajfour last updated on 03/Oct/18

Commented by ajfour last updated on 03/Oct/18

If  𝛍(x)= ((μ_0 L)/(L+(μ_0 −1)x))  Find equation of path of light  as it travels in the medium with  refractive index μ(x).  Hence determine 𝛃 in terms of  𝛂 and 𝛍_0 .

$${If}\:\:\boldsymbol{\mu}\left({x}\right)=\:\frac{\mu_{\mathrm{0}} {L}}{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}} \\ $$$${Find}\:{equation}\:{of}\:{path}\:{of}\:{light} \\ $$$${as}\:{it}\:{travels}\:{in}\:{the}\:{medium}\:{with} \\ $$$${refractive}\:{index}\:\mu\left({x}\right). \\ $$$${Hence}\:{determine}\:\boldsymbol{\beta}\:{in}\:{terms}\:{of} \\ $$$$\boldsymbol{\alpha}\:{and}\:\boldsymbol{\mu}_{\mathrm{0}} . \\ $$

Commented by MrW3 last updated on 03/Oct/18

𝛍(x)= ((μ_0 L)/(L+(μ_0 −1)x))  (dμ/dx)=−(((μ_0 −1)μ_0 L)/([L+(μ_0 −1)x]^2 ))=−(((μ_0 −1)μ)/(L+(μ_0 −1)x))  μ sin θ=constant  sin θ (dμ/dx)+μ cos θ (dθ/dx)=0  −(((μ_0 −1)μ)/(L+(μ_0 −1)x))+μ((cos θ)/(sin θ))×(dθ/dx)=0  −(((μ_0 −1))/(L+(μ_0 −1)x))+((d(ln sin θ))/dx)=0  let Φ=ln sin θ  −(((μ_0 −1))/(L+(μ_0 −1)x))+(dΦ/dx)=0  dΦ=(((μ_0 −1)dx)/(L+(μ_0 −1)x))  ∫_Φ_0  ^Φ dΦ=∫_0 ^x (((μ_0 −1)dx)/(L+(μ_0 −1)x))  Φ−Φ_0 =[ln {L+(μ_0 −1)x}]_0 ^x   ln ((sin θ)/(sin θ_0 ))=ln ((L+(μ_0 −1)x)/L)  sin θ=sin θ_0  ((L+(μ_0 −1)x)/L)  at x=L:  sin θ_1 =μ_0  sin θ_0   ⇒θ_1 =sin^(−1) (μ_0  sin θ_0 )  sin θ=sin θ_0  ((L+(μ_0 −1)x)/L)=sin θ_0 [1+(μ_0 −1)(x/L)]=λ(x)  λ(x)=sin θ_0 [1+(μ_0 −1)(x/L)]  dλ=sin θ_0  ((μ_0 −1)/L) dx  tan θ=((sin θ)/(√(1−sin^2  θ)))=(λ/(√(1−λ^2 )))  (dy/dx)=(λ/(√(1−λ^2 )))  dy=(λ/(√(1−λ^2 )))dx=(λ/(√(1−λ^2 )))×(L/((μ_0 −1)sin θ_0 ))×dλ  (((μ_0 −1)sin θ_0 )/L)dy=(λ/(√(1−λ^2 )))dλ  (((μ_0 −1)sin θ_0 )/L)∫_0 ^y dy=∫_λ_0  ^λ (λ/(√(1−λ^2 )))dλ  (((μ_0 −1)sin θ_0 )/L)y=−(1/2)∫_λ_0  ^λ (1/(√(1−λ^2 )))d(1−λ^2 )  (((μ_0 −1)sin θ_0 )/L)y=−[(√(1−λ^2 ))]_λ_0  ^λ =(√(1−λ_0 ^2 ))−(√(1−λ^2 ))  λ_0 =sin θ_0   (((μ_0 −1)sin θ_0 )/L)y=cos θ_0 −cos θ=cos θ_0 −(√(1−sin^2  θ_0  [1+(μ_0 −1)(x/L)]^2 ))  ⇒y=(L/((μ_0 −1)sin θ_0 )){cos θ_0 −(√(1−sin^2  θ_0  [1+(μ_0 −1)(x/L)]^2 ))}    at x=0: μ(0)=μ_0   from air into medium  sin α=μ_0 sin θ_0   ⇒sin θ_0 =((sin α)/μ_0 )  at x=L: μ(1)=1  from medium into air  μ(1)×sin θ_1 =sin β  ⇒β=θ_1 =sin^(−1) (μ_0  sin θ_0 )=sin^(−1) (sin α)=α  ⇒y=((μ_0 L)/((μ_0 −1)sin α)){(√(1−(((sin α)/μ_0 ))^2 ))−(√(1−(((sin α)/μ_0 ))^2  [1+(μ_0 −1)(x/L)]^2 ))}

$$\boldsymbol{\mu}\left({x}\right)=\:\frac{\mu_{\mathrm{0}} {L}}{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}} \\ $$$$\frac{{d}\mu}{{dx}}=−\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mu_{\mathrm{0}} {L}}{\left[{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}\right]^{\mathrm{2}} }=−\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mu}{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}} \\ $$$$\mu\:\mathrm{sin}\:\theta={constant} \\ $$$$\mathrm{sin}\:\theta\:\frac{{d}\mu}{{dx}}+\mu\:\mathrm{cos}\:\theta\:\frac{{d}\theta}{{dx}}=\mathrm{0} \\ $$$$−\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mu}{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}}+\mu\frac{\mathrm{cos}\:\theta}{\mathrm{sin}\:\theta}×\frac{{d}\theta}{{dx}}=\mathrm{0} \\ $$$$−\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)}{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}}+\frac{{d}\left(\mathrm{ln}\:\mathrm{sin}\:\theta\right)}{{dx}}=\mathrm{0} \\ $$$${let}\:\Phi=\mathrm{ln}\:\mathrm{sin}\:\theta \\ $$$$−\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)}{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}}+\frac{{d}\Phi}{{dx}}=\mathrm{0} \\ $$$${d}\Phi=\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right){dx}}{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}} \\ $$$$\int_{\Phi_{\mathrm{0}} } ^{\Phi} {d}\Phi=\int_{\mathrm{0}} ^{{x}} \frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right){dx}}{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}} \\ $$$$\Phi−\Phi_{\mathrm{0}} =\left[\mathrm{ln}\:\left\{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}\right\}\right]_{\mathrm{0}} ^{{x}} \\ $$$$\mathrm{ln}\:\frac{\mathrm{sin}\:\theta}{\mathrm{sin}\:\theta_{\mathrm{0}} }=\mathrm{ln}\:\frac{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}}{{L}} \\ $$$$\mathrm{sin}\:\theta=\mathrm{sin}\:\theta_{\mathrm{0}} \:\frac{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}}{{L}} \\ $$$${at}\:{x}={L}: \\ $$$$\mathrm{sin}\:\theta_{\mathrm{1}} =\mu_{\mathrm{0}} \:\mathrm{sin}\:\theta_{\mathrm{0}} \\ $$$$\Rightarrow\theta_{\mathrm{1}} =\mathrm{sin}^{−\mathrm{1}} \left(\mu_{\mathrm{0}} \:\mathrm{sin}\:\theta_{\mathrm{0}} \right) \\ $$$$\mathrm{sin}\:\theta=\mathrm{sin}\:\theta_{\mathrm{0}} \:\frac{{L}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}}{{L}}=\mathrm{sin}\:\theta_{\mathrm{0}} \left[\mathrm{1}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\frac{{x}}{{L}}\right]=\lambda\left({x}\right) \\ $$$$\lambda\left({x}\right)=\mathrm{sin}\:\theta_{\mathrm{0}} \left[\mathrm{1}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\frac{{x}}{{L}}\right] \\ $$$${d}\lambda=\mathrm{sin}\:\theta_{\mathrm{0}} \:\frac{\mu_{\mathrm{0}} −\mathrm{1}}{{L}}\:{dx} \\ $$$$\mathrm{tan}\:\theta=\frac{\mathrm{sin}\:\theta}{\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta}}=\frac{\lambda}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }} \\ $$$$\frac{{dy}}{{dx}}=\frac{\lambda}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }} \\ $$$${dy}=\frac{\lambda}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}{dx}=\frac{\lambda}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}×\frac{{L}}{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mathrm{sin}\:\theta_{\mathrm{0}} }×{d}\lambda \\ $$$$\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mathrm{sin}\:\theta_{\mathrm{0}} }{{L}}{dy}=\frac{\lambda}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}{d}\lambda \\ $$$$\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mathrm{sin}\:\theta_{\mathrm{0}} }{{L}}\int_{\mathrm{0}} ^{{y}} {dy}=\int_{\lambda_{\mathrm{0}} } ^{\lambda} \frac{\lambda}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}{d}\lambda \\ $$$$\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mathrm{sin}\:\theta_{\mathrm{0}} }{{L}}{y}=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\lambda_{\mathrm{0}} } ^{\lambda} \frac{\mathrm{1}}{\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }}{d}\left(\mathrm{1}−\lambda^{\mathrm{2}} \right) \\ $$$$\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mathrm{sin}\:\theta_{\mathrm{0}} }{{L}}{y}=−\left[\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} }\right]_{\lambda_{\mathrm{0}} } ^{\lambda} =\sqrt{\mathrm{1}−\lambda_{\mathrm{0}} ^{\mathrm{2}} }−\sqrt{\mathrm{1}−\lambda^{\mathrm{2}} } \\ $$$$\lambda_{\mathrm{0}} =\mathrm{sin}\:\theta_{\mathrm{0}} \\ $$$$\frac{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mathrm{sin}\:\theta_{\mathrm{0}} }{{L}}{y}=\mathrm{cos}\:\theta_{\mathrm{0}} −\mathrm{cos}\:\theta=\mathrm{cos}\:\theta_{\mathrm{0}} −\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{0}} \:\left[\mathrm{1}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\frac{{x}}{{L}}\right]^{\mathrm{2}} } \\ $$$$\Rightarrow{y}=\frac{{L}}{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mathrm{sin}\:\theta_{\mathrm{0}} }\left\{\mathrm{cos}\:\theta_{\mathrm{0}} −\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{0}} \:\left[\mathrm{1}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\frac{{x}}{{L}}\right]^{\mathrm{2}} }\right\} \\ $$$$ \\ $$$${at}\:{x}=\mathrm{0}:\:\mu\left(\mathrm{0}\right)=\mu_{\mathrm{0}} \\ $$$${from}\:{air}\:{into}\:{medium} \\ $$$$\mathrm{sin}\:\alpha=\mu_{\mathrm{0}} \mathrm{sin}\:\theta_{\mathrm{0}} \\ $$$$\Rightarrow\mathrm{sin}\:\theta_{\mathrm{0}} =\frac{\mathrm{sin}\:\alpha}{\mu_{\mathrm{0}} } \\ $$$${at}\:{x}={L}:\:\mu\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${from}\:{medium}\:{into}\:{air} \\ $$$$\mu\left(\mathrm{1}\right)×\mathrm{sin}\:\theta_{\mathrm{1}} =\mathrm{sin}\:\beta \\ $$$$\Rightarrow\beta=\theta_{\mathrm{1}} =\mathrm{sin}^{−\mathrm{1}} \left(\mu_{\mathrm{0}} \:\mathrm{sin}\:\theta_{\mathrm{0}} \right)=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{sin}\:\alpha\right)=\alpha \\ $$$$\Rightarrow{y}=\frac{\mu_{\mathrm{0}} {L}}{\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\mathrm{sin}\:\alpha}\left\{\sqrt{\mathrm{1}−\left(\frac{\mathrm{sin}\:\alpha}{\mu_{\mathrm{0}} }\right)^{\mathrm{2}} }−\sqrt{\mathrm{1}−\left(\frac{\mathrm{sin}\:\alpha}{\mu_{\mathrm{0}} }\right)^{\mathrm{2}} \:\left[\mathrm{1}+\left(\mu_{\mathrm{0}} −\mathrm{1}\right)\frac{{x}}{{L}}\right]^{\mathrm{2}} }\right\} \\ $$

Commented by ajfour last updated on 03/Oct/18

Awesome, Sir.

$${Awesome},\:{Sir}. \\ $$

Commented by MrW3 last updated on 03/Oct/18

thank you for checking sir!

$${thank}\:{you}\:{for}\:{checking}\:{sir}! \\ $$

Commented by ajfour last updated on 03/Oct/18

Sir, our answers differ only by  a factor of c = sin α .

$${Sir},\:{our}\:{answers}\:{differ}\:{only}\:{by} \\ $$$${a}\:{factor}\:{of}\:{c}\:=\:\mathrm{sin}\:\alpha\:. \\ $$

Commented by MrW3 last updated on 03/Oct/18

you are right sir. I overlooked  something.

$${you}\:{are}\:{right}\:{sir}.\:{I}\:{overlooked}\:\:{something}. \\ $$

Answered by ajfour last updated on 03/Oct/18

sin α = μ_0 sin θ_0 = sin β = μsin θ =c   ((dy/dx))^2  = tan^2 θ = ((sin^2 θ)/(1−sin^2 θ))     (dy/dx)  = ((c/μ)/(√(1−(c^2 /μ^2 )))) = (c/(√(μ^2 −c^2 )))    y = ∫_μ_0  ^(  μ) (c/(√(μ^2 −c^2 )))×((dx/dμ))dμ  𝛍= ((𝛍_0 L)/(L+(𝛍_0 −1)x))  (μ_0 −1)x = ((μ_0 L)/μ) − L  ⇒  (dx/dμ) = −((μ_0 L)/(μ^2 (μ_0 −1)))    y = −∫_μ_0  ^(  μ) (c/(√(μ^2 −c^2 )))(((μ_0 L)/(μ^2 (μ_0 −1))))dμ       = ((μ_0 cL)/(μ_0 −1))∫_μ ^(  μ_0 ) (dμ/(μ^2 (√(μ^2 −c^2 ))))  let  μ= csec φ     ⇒  dμ = csec φtan φdφ    y = ((μ_0 cL)/(μ_0 −1))∫_φ ^(  φ_0 )  ((csec φtan φdφ)/(c^2 sec^2 φ(ctan φ)))       = ((μ_0 L)/(c(μ_0 −1))) [sin φ_0 −sin φ]    y = ((𝛍_0 L)/(c(𝛍_0 −1)))[((√(𝛍_0 ^2 −c^2 ))/𝛍_0 )−((√(𝛍^2 −c^2 ))/𝛍) ]  with 𝛍 = ((𝛍_0 L)/(L+(𝛍_0 −1)x))  & c=sin 𝛂 .

$$\mathrm{sin}\:\alpha\:=\:\mu_{\mathrm{0}} \mathrm{sin}\:\theta_{\mathrm{0}} =\:\mathrm{sin}\:\beta\:=\:\mu\mathrm{sin}\:\theta\:={c} \\ $$$$\:\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} \:=\:\mathrm{tan}\:^{\mathrm{2}} \theta\:=\:\frac{\mathrm{sin}\:^{\mathrm{2}} \theta}{\mathrm{1}−\mathrm{sin}\:^{\mathrm{2}} \theta} \\ $$$$\:\:\:\frac{{dy}}{{dx}}\:\:=\:\frac{{c}/\mu}{\sqrt{\mathrm{1}−\frac{{c}^{\mathrm{2}} }{\mu^{\mathrm{2}} }}}\:=\:\frac{{c}}{\sqrt{\mu^{\mathrm{2}} −{c}^{\mathrm{2}} }} \\ $$$$\:\:{y}\:=\:\int_{\mu_{\mathrm{0}} } ^{\:\:\mu} \frac{{c}}{\sqrt{\mu^{\mathrm{2}} −{c}^{\mathrm{2}} }}×\left(\frac{{dx}}{{d}\mu}\right){d}\mu \\ $$$$\boldsymbol{\mu}=\:\frac{\boldsymbol{\mu}_{\mathrm{0}} {L}}{{L}+\left(\boldsymbol{\mu}_{\mathrm{0}} −\mathrm{1}\right){x}} \\ $$$$\left(\mu_{\mathrm{0}} −\mathrm{1}\right){x}\:=\:\frac{\mu_{\mathrm{0}} {L}}{\mu}\:−\:{L} \\ $$$$\Rightarrow\:\:\frac{{dx}}{{d}\mu}\:=\:−\frac{\mu_{\mathrm{0}} {L}}{\mu^{\mathrm{2}} \left(\mu_{\mathrm{0}} −\mathrm{1}\right)} \\ $$$$\:\:{y}\:=\:−\int_{\mu_{\mathrm{0}} } ^{\:\:\mu} \frac{{c}}{\sqrt{\mu^{\mathrm{2}} −{c}^{\mathrm{2}} }}\left(\frac{\mu_{\mathrm{0}} {L}}{\mu^{\mathrm{2}} \left(\mu_{\mathrm{0}} −\mathrm{1}\right)}\right){d}\mu \\ $$$$\:\:\:\:\:=\:\frac{\mu_{\mathrm{0}} {cL}}{\mu_{\mathrm{0}} −\mathrm{1}}\int_{\mu} ^{\:\:\mu_{\mathrm{0}} } \frac{{d}\mu}{\mu^{\mathrm{2}} \sqrt{\mu^{\mathrm{2}} −{c}^{\mathrm{2}} }} \\ $$$${let}\:\:\mu=\:{c}\mathrm{sec}\:\phi \\ $$$$\:\:\:\Rightarrow\:\:{d}\mu\:=\:{c}\mathrm{sec}\:\phi\mathrm{tan}\:\phi{d}\phi \\ $$$$\:\:{y}\:=\:\frac{\mu_{\mathrm{0}} {cL}}{\mu_{\mathrm{0}} −\mathrm{1}}\int_{\phi} ^{\:\:\phi_{\mathrm{0}} } \:\frac{{c}\mathrm{sec}\:\phi\mathrm{tan}\:\phi{d}\phi}{{c}^{\mathrm{2}} \mathrm{sec}\:^{\mathrm{2}} \phi\left({c}\mathrm{tan}\:\phi\right)} \\ $$$$\:\:\:\:\:=\:\frac{\mu_{\mathrm{0}} {L}}{{c}\left(\mu_{\mathrm{0}} −\mathrm{1}\right)}\:\left[\mathrm{sin}\:\phi_{\mathrm{0}} −\mathrm{sin}\:\phi\right] \\ $$$$\:\:\boldsymbol{{y}}\:=\:\frac{\boldsymbol{\mu}_{\mathrm{0}} \boldsymbol{{L}}}{\boldsymbol{{c}}\left(\boldsymbol{\mu}_{\mathrm{0}} −\mathrm{1}\right)}\left[\frac{\sqrt{\boldsymbol{\mu}_{\mathrm{0}} ^{\mathrm{2}} −\boldsymbol{{c}}^{\mathrm{2}} }}{\boldsymbol{\mu}_{\mathrm{0}} }−\frac{\sqrt{\boldsymbol{\mu}^{\mathrm{2}} −\boldsymbol{{c}}^{\mathrm{2}} }}{\boldsymbol{\mu}}\:\right] \\ $$$${with}\:\boldsymbol{\mu}\:=\:\frac{\boldsymbol{\mu}_{\mathrm{0}} \boldsymbol{{L}}}{\boldsymbol{{L}}+\left(\boldsymbol{\mu}_{\mathrm{0}} −\mathrm{1}\right)\boldsymbol{{x}}}\:\:\&\:\boldsymbol{{c}}=\mathrm{sin}\:\boldsymbol{\alpha}\:. \\ $$$$ \\ $$

Commented by MrW3 last updated on 03/Oct/18

nice and straightforward!

$${nice}\:{and}\:{straightforward}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com