Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 44706 by maxmathsup by imad last updated on 03/Oct/18

let f_α (x) = ((cos(αx))/(1+x^2 ))  1) calculate f^((n)) (x) and f^((n)) (0)  2) developp f at integr serie  3) give ∫_0 ^x  f_α (t) dt  at form of serie   4) developp  ∫_0 ^∞     f_α (t)dt  at  integr serie .

letfα(x)=cos(αx)1+x21)calculatef(n)(x)andf(n)(0)2)developpfatintegrserie3)give0xfα(t)dtatformofserie4)developp0fα(t)dtatintegrserie.

Commented by maxmathsup by imad last updated on 04/Oct/18

1) we have f_α (x) =((cos(αx))/((x−i)(x+i))) =((cos(αx))/(2i)){(1/(x−i)) −(1/(x+i))}  =(1/(2i)){ ((cos(αx))/(x−i)) −((cos(αx))/(x+i))} ⇒f^((n)) (x) =(1/(2i)){ (((cos(αx))/(x−i)))^((n)) −(((cos(αx))/(x+i)))^((n)) } but  (((cos(αx))/((x−i))))^((n))  =Σ_(k=0) ^n  C_n ^k   (cos(αx)^ )^((k))  ((1/(x−i)))^((n−k))     (leibniz formulae)  =Σ_(k=0) ^n  C_n ^k   cos(αx +((kπ)/2)) (((−1)^(n−k) (n−k)!)/((x−i)^(n−k +1) ))  also  (((cos(αx))/(x+i)))^((n))  =Σ_(k=0) ^n  C_n ^k   cos(αx+(π/2))(((−1)^(n−k) (n−k)!)/((x+i)^(n−k+1) )) ⇒  f^((n)) (x)=(1/(2i)) Σ_(k=0) ^n   C_n ^k   (−1)^(n−k) (n−k)! cos(αx+((kπ)/2)){(1/((x−i)^(n−k+1) )) −(1/((x+i)^(n−k+1) ))}  f^((n)) (0) =(1/(2i)) Σ_(k=0) ^n  (−1)^(n−k)  ((n!)/(k!)) cos(((kπ)/2)){i^(n−k+1)  −(−i)^(n−k+1) }  =Σ_(k=0) ^n  (−1)^(n−k)  ((n!)/(k!)) cos(((kπ)/2))sin(n−k+1)(π/2)

1)wehavefα(x)=cos(αx)(xi)(x+i)=cos(αx)2i{1xi1x+i}=12i{cos(αx)xicos(αx)x+i}f(n)(x)=12i{(cos(αx)xi)(n)(cos(αx)x+i)(n)}but(cos(αx)(xi))(n)=k=0nCnk(cos(αx))(k)(1xi)(nk)(leibnizformulae)=k=0nCnkcos(αx+kπ2)(1)nk(nk)!(xi)nk+1also(cos(αx)x+i)(n)=k=0nCnkcos(αx+π2)(1)nk(nk)!(x+i)nk+1f(n)(x)=12ik=0nCnk(1)nk(nk)!cos(αx+kπ2){1(xi)nk+11(x+i)nk+1}f(n)(0)=12ik=0n(1)nkn!k!cos(kπ2){ink+1(i)nk+1}=k=0n(1)nkn!k!cos(kπ2)sin(nk+1)π2

Commented by maxmathsup by imad last updated on 05/Oct/18

2) we have f(x) =Σ_(n=0) ^∞    ((f^((n)) (0))/(n!)) x^n   =Σ_(n=0) ^∞   ( Σ_(k=0) ^n   (((−1)^(n−k) )/(k!)) cos(((kπ)/2))sin(n−k+1)(π/2))x^n   =Σ_(n=0) ^∞  (Σ_(k=0) ^n   (((−1)^(n−k) )/(k!)) cos(((kπ)/2))cos((n−k)(π/2)) x^n  .

2)wehavef(x)=n=0f(n)(0)n!xn=n=0(k=0n(1)nkk!cos(kπ2)sin(nk+1)π2)xn=n=0(k=0n(1)nkk!cos(kπ2)cos((nk)π2)xn.

Commented by maxmathsup by imad last updated on 05/Oct/18

3) ∫_0 ^x  f_α (t)dt =Σ_(n=0) ^∞ (Σ_(k=0) ^n   (((−1)^(n−k) )/(k!)) cos(((kπ)/2))cos((n−k)(π/2)) (x^(n+1) /(n+1)) .

3)0xfα(t)dt=n=0(k=0n(1)nkk!cos(kπ2)cos((nk)π2)xn+1n+1.

Commented by maxmathsup by imad last updated on 05/Oct/18

4) let calculate first ∫_0 ^∞   f_α (t)dt  =I_α   I_α = ∫_0 ^∞   ((cos(αt))/(1+t^2 ))dt ⇒2I_α  = ∫_(−∞) ^(+∞)    ((cos(αt))/(1+t^2 ))dt =Re(∫_(−∞) ^(+∞)   (e^(iαt) /(1+t^2 ))dt)  let ϕ(z) =(e^(iαz) /(1+z^2 ))  the poles of ϕ are i and −i residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπRes(ϕ,i) =2iπ  (e^(−α) /(2i)) =π e^(−α)  ⇒ I_α =(π/2) e^(−α)   ⇒∫_0 ^∞   f_α (t)dt =(π/2) e^(−α)  =(π/2) Σ_(n=0) ^∞    (((−α)^n )/(n!)) =(π/2) Σ_(n=0) ^∞  (((−1)^n )/(n!)) α^n  .

4)letcalculatefirst0fα(t)dt=IαIα=0cos(αt)1+t2dt2Iα=+cos(αt)1+t2dt=Re(+eiαt1+t2dt)letφ(z)=eiαz1+z2thepolesofφareiandiresidustheoremgive+φ(z)dz=2iπRes(φ,i)=2iπeα2i=πeαIα=π2eα0fα(t)dt=π2eα=π2n=0(α)nn!=π2n=0(1)nn!αn.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com