Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 44763 by ajfour last updated on 04/Oct/18

Commented by ajfour last updated on 04/Oct/18

Equation of ellipse :  (x^2 /a^2 )+(y^2 /b^2 ) = 1.  Find r in terms of a, b.

Equationofellipse:x2a2+y2b2=1.Findrintermsofa,b.

Answered by ajfour last updated on 04/Oct/18

   let point of contact of circle  and ellipse be (x_0 , y_0 )  let     y_0 = bsin 𝛗 = r(1+sin 𝛉)  ...(i)     x_0 = acos 𝛗 = r(1+cos 𝛉) ...(ii)    slope of common tangent:     ((bcos 𝛗)/(βˆ’asin 𝛗)) = βˆ’cot 𝛉  β‡’  bcos 𝛗sin 𝛉 = asin 𝛗cos 𝛉  ..(iii)  β‡’  tan 𝛗 = ((bsin ΞΈ)/(acos ΞΈ)) = (a/b)(((1+sin 𝛉)/(1+cos 𝛉)))  we must have a double root for  this eq. in ΞΈ ;  let tan 𝛉 = m  let  tan (ΞΈ/2) = t , then    2t = m(1βˆ’t^2 )   and also get     (b/a)Γ—((2t)/(1βˆ’t^2 )) = (a/b)Γ—((1+t^2 +2t)/2)  β‡’  4b^2 t = a^2 (1βˆ’t^2 )(1+t)^2   β‡’ 4b^2 t = a^2 (1+2t+t^2 βˆ’t^2 βˆ’2t^3 βˆ’t^4 )  let  ((4b^2 )/a^2 )βˆ’2= 𝛒   (ρ > 0 if  b(√2) > a )  β‡’ t^4 +2t^3 +ρtβˆ’1=0  this eq. must have two real   roots corresponding to tan ΞΈ = m  and two complex roots;   say    (mt^2 +2tβˆ’m)(t^2 +pt+q)=0   t^4 +2t^3 +ρtβˆ’1 ⇔ (t^2 +((2t)/m)βˆ’1)(t^2 +pt+q)  β‡’ for t=0   βˆ’q = βˆ’1     ....(1)   for t=1    2+𝛒 = (2/m)(1+p+q)  ...(2)    for t=βˆ’1    βˆ’2βˆ’π›’ =βˆ’(2/m)(1βˆ’p+q)   ...(3)  from  eq.(2)  &  eq.(3) we infer     p = 0 and therefore from (2)           (2/m)(1+0+1) = 2+𝛒  β‡’  m= tan ΞΈ = (4/(2+ρ)) = (a^2 /b^2 )  And as   mt^2 +2tβˆ’m = 0  with appropriate t=tan (ΞΈ/2)  being +ve  and < 1 , we conclude          t = βˆ’(1/m)+(√(1+(1/m^2 )))    and  with  m= (a^2 /b^2 )       t = βˆ’(b^2 /a^2 )+((√(a^4 +b^4 ))/a^2 )  β‡’    from  (i) & (ii)  (in the beginning),     r^2 [(((1+sin ΞΈ)^2 )/b^2 )+(((1+cos ΞΈ)^2 )/a^2 )]=1   β‡’ r^2  = ((a^2 b^2 )/(a^2 (1+sin 𝛉)^2 +b^2 (1+cos 𝛉)^2 ))    = ((a^2 b^2 )/(a^2 (1+((2t)/(1+t^2 )))^2 +b^2 (1+((1βˆ’t^2 )/(1+t^2 )))^2 ))     { ((r^2 = ((a^2 b^2 (1+t^2 )^2 )/(a^2 (1+t)^4 +4b^2 )))),((with    t=βˆ’(b^2 /a^2 )+((√(a^4 +b^4 ))/a^2 ))) :}   As a check , if  a=b=R  we have   t= (√2)βˆ’1     and    r = ((ab(1+t^2 ))/(√(a^2 (1+t)^4 +4b^2 )))    β‡’  r = (((4βˆ’2(√2))R)/(2(√2)))  = (((2βˆ’(√2))R)/(√2))              = ((2R)/((√2)(2+(√2)))) = (R/(1+(√2)))       (as it should be !) .

letpointofcontactofcircleandellipsebe(x0,y0)lety0=bsinΟ•=r(1+sinΞΈ)...(i)x0=acosΟ•=r(1+cosΞΈ)...(ii)slopeofcommontangent:bcosΟ•βˆ’asinΟ•=βˆ’cotΞΈβ‡’bcosΟ•sinΞΈ=asinΟ•cosΞΈ..(iii)β‡’tanΟ•=bsinΞΈacosΞΈ=ab(1+sinΞΈ1+cosΞΈ)wemusthaveadoublerootforthiseq.inΞΈ;lettanΞΈ=mlettanΞΈ2=t,then2t=m(1βˆ’t2)andalsogetbaΓ—2t1βˆ’t2=abΓ—1+t2+2t2β‡’4b2t=a2(1βˆ’t2)(1+t)2β‡’4b2t=a2(1+2t+t2βˆ’t2βˆ’2t3βˆ’t4)let4b2a2βˆ’2=ρ(ρ>0ifb2>a)β‡’t4+2t3+ρtβˆ’1=0thiseq.musthavetworealrootscorrespondingtotanΞΈ=mandtwocomplexroots;say(mt2+2tβˆ’m)(t2+pt+q)=0t4+2t3+ρtβˆ’1⇔(t2+2tmβˆ’1)(t2+pt+q)β‡’fort=0βˆ’q=βˆ’1....(1)fort=12+ρ=2m(1+p+q)...(2)fort=βˆ’1βˆ’2βˆ’Ο=βˆ’2m(1βˆ’p+q)...(3)fromeq.(2)&eq.(3)weinferp=0andthereforefrom(2)2m(1+0+1)=2+ρ⇒m=tanΞΈ=42+ρ=a2b2Andasmt2+2tβˆ’m=0withappropriatet=tanΞΈ2being+veand<1,weconcludet=βˆ’1m+1+1m2andwithm=a2b2t=βˆ’b2a2+a4+b4a2β‡’from(i)&(ii)(inthebeginning),r2[(1+sinΞΈ)2b2+(1+cosΞΈ)2a2]=1β‡’r2=a2b2a2(1+sinΞΈ)2+b2(1+cosΞΈ)2=a2b2a2(1+2t1+t2)2+b2(1+1βˆ’t21+t2)2{r2=a2b2(1+t2)2a2(1+t)4+4b2witht=βˆ’b2a2+a4+b4a2Asacheck,ifa=b=Rwehavet=2βˆ’1andr=ab(1+t2)a2(1+t)4+4b2β‡’r=(4βˆ’22)R22=(2βˆ’2)R2=2R2(2+2)=R1+2(asitshouldbe!).

Commented by MrW3 last updated on 04/Oct/18

fantastic solution sir!

fantasticsolutionsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com