All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 44763 by ajfour last updated on 04/Oct/18
Commented by ajfour last updated on 04/Oct/18
Equationofellipse:x2a2+y2b2=1.Findrintermsofa,b.
Answered by ajfour last updated on 04/Oct/18
letpointofcontactofcircleandellipsebe(x0,y0)lety0=bsinΟ=r(1+sinΞΈ)...(i)x0=acosΟ=r(1+cosΞΈ)...(ii)slopeofcommontangent:bcosΟβasinΟ=βcotΞΈβbcosΟsinΞΈ=asinΟcosΞΈ..(iii)βtanΟ=bsinΞΈacosΞΈ=ab(1+sinΞΈ1+cosΞΈ)wemusthaveadoublerootforthiseq.inΞΈ;lettanΞΈ=mlettanΞΈ2=t,then2t=m(1βt2)andalsogetbaΓ2t1βt2=abΓ1+t2+2t2β4b2t=a2(1βt2)(1+t)2β4b2t=a2(1+2t+t2βt2β2t3βt4)let4b2a2β2=Ο(Ο>0ifb2>a)βt4+2t3+Οtβ1=0thiseq.musthavetworealrootscorrespondingtotanΞΈ=mandtwocomplexroots;say(mt2+2tβm)(t2+pt+q)=0t4+2t3+Οtβ1β(t2+2tmβ1)(t2+pt+q)βfort=0βq=β1....(1)fort=12+Ο=2m(1+p+q)...(2)fort=β1β2βΟ=β2m(1βp+q)...(3)fromeq.(2)&eq.(3)weinferp=0andthereforefrom(2)2m(1+0+1)=2+Οβm=tanΞΈ=42+Ο=a2b2Andasmt2+2tβm=0withappropriatet=tanΞΈ2being+veand<1,weconcludet=β1m+1+1m2andwithm=a2b2t=βb2a2+a4+b4a2βfrom(i)&(ii)(inthebeginning),r2[(1+sinΞΈ)2b2+(1+cosΞΈ)2a2]=1βr2=a2b2a2(1+sinΞΈ)2+b2(1+cosΞΈ)2=a2b2a2(1+2t1+t2)2+b2(1+1βt21+t2)2{r2=a2b2(1+t2)2a2(1+t)4+4b2witht=βb2a2+a4+b4a2Asacheck,ifa=b=Rwehavet=2β1andr=ab(1+t2)a2(1+t)4+4b2βr=(4β22)R22=(2β2)R2=2R2(2+2)=R1+2(asitshouldbe!).
Commented by MrW3 last updated on 04/Oct/18
fantasticsolutionsir!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com