Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 4487 by Rasheed Soomro last updated on 31/Jan/16

If  y^2 +3uy−5u^2 =2 ,  2t^2 −2tu−3u^2 −1=0   and 5x^2 +4xt−t^2 =0 ,find  (dy/dx)  and   (du/dt) .

$${If}\:\:{y}^{\mathrm{2}} +\mathrm{3}{uy}−\mathrm{5}{u}^{\mathrm{2}} =\mathrm{2}\:,\:\:\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{tu}−\mathrm{3}{u}^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\: \\ $$$${and}\:\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}{xt}−{t}^{\mathrm{2}} =\mathrm{0}\:,{find}\:\:\frac{{dy}}{{dx}}\:\:{and}\:\:\:\frac{{du}}{{dt}}\:. \\ $$

Answered by Yozzii last updated on 31/Jan/16

(dy/dx)=(dy/du)×(du/dx)=(dy/du)((du/dt)×(dt/dx)) (chain rule)  Let (1): 2t^2 −2tu−3u^2 −1=0   Implicitly differentiating (1) w.r.t t  ⇒ 4t−2(t(du/dt)+u)−6u(du/dt)=0  −2t(du/dt)−6u(du/dt)=2u−4t  (du/dt)=((2u−4t)/(−(2t+6u)))=((2t−u)/(3u+t))    (3u≠−t)    Let (2): 5x^2 +4xt−t^2 =0.  Implicitly differentiating (2) w.r.t  t gives   10x(dx/dt)+4(x+t(dx/dt))−2t=0  (10x+4t)(dx/dt)=2t−4x  (dx/dt)=((2t−4x)/(4t+10x))=((t−2x)/(2t+5x))⇒ (dt/dx)=((2t+5x)/(t−2x))   (t≠2x)    Let (3): y^2 +3yu−5u^2 =2.  Differentiating (3) implicitly w.r.t u  ⇒ 2y(dy/du)+3y+3u(dy/du)−10u=0  (2y+3u)(dy/du)=10u−3y  (dy/du)=((10u−3y)/(2y+3u))  ∴(dy/dx)=(((10u−3y)(2t−u)(2t+5x))/((2y+3u)(3u+t)(t−2x)))

$$\frac{{dy}}{{dx}}=\frac{{dy}}{{du}}×\frac{{du}}{{dx}}=\frac{{dy}}{{du}}\left(\frac{{du}}{{dt}}×\frac{{dt}}{{dx}}\right)\:\left({chain}\:{rule}\right) \\ $$$${Let}\:\left(\mathrm{1}\right):\:\mathrm{2}{t}^{\mathrm{2}} −\mathrm{2}{tu}−\mathrm{3}{u}^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\: \\ $$$${Implicitly}\:{differentiating}\:\left(\mathrm{1}\right)\:{w}.{r}.{t}\:{t} \\ $$$$\Rightarrow\:\mathrm{4}{t}−\mathrm{2}\left({t}\frac{{du}}{{dt}}+{u}\right)−\mathrm{6}{u}\frac{{du}}{{dt}}=\mathrm{0} \\ $$$$−\mathrm{2}{t}\frac{{du}}{{dt}}−\mathrm{6}{u}\frac{{du}}{{dt}}=\mathrm{2}{u}−\mathrm{4}{t} \\ $$$$\frac{{du}}{{dt}}=\frac{\mathrm{2}{u}−\mathrm{4}{t}}{−\left(\mathrm{2}{t}+\mathrm{6}{u}\right)}=\frac{\mathrm{2}{t}−{u}}{\mathrm{3}{u}+{t}}\:\:\:\:\left(\mathrm{3}{u}\neq−{t}\right) \\ $$$$ \\ $$$${Let}\:\left(\mathrm{2}\right):\:\mathrm{5}{x}^{\mathrm{2}} +\mathrm{4}{xt}−{t}^{\mathrm{2}} =\mathrm{0}. \\ $$$${Implicitly}\:{differentiating}\:\left(\mathrm{2}\right)\:{w}.{r}.{t} \\ $$$${t}\:{gives}\: \\ $$$$\mathrm{10}{x}\frac{{dx}}{{dt}}+\mathrm{4}\left({x}+{t}\frac{{dx}}{{dt}}\right)−\mathrm{2}{t}=\mathrm{0} \\ $$$$\left(\mathrm{10}{x}+\mathrm{4}{t}\right)\frac{{dx}}{{dt}}=\mathrm{2}{t}−\mathrm{4}{x} \\ $$$$\frac{{dx}}{{dt}}=\frac{\mathrm{2}{t}−\mathrm{4}{x}}{\mathrm{4}{t}+\mathrm{10}{x}}=\frac{{t}−\mathrm{2}{x}}{\mathrm{2}{t}+\mathrm{5}{x}}\Rightarrow\:\frac{{dt}}{{dx}}=\frac{\mathrm{2}{t}+\mathrm{5}{x}}{{t}−\mathrm{2}{x}}\:\:\:\left({t}\neq\mathrm{2}{x}\right) \\ $$$$ \\ $$$${Let}\:\left(\mathrm{3}\right):\:{y}^{\mathrm{2}} +\mathrm{3}{yu}−\mathrm{5}{u}^{\mathrm{2}} =\mathrm{2}. \\ $$$${Differentiating}\:\left(\mathrm{3}\right)\:{implicitly}\:{w}.{r}.{t}\:{u} \\ $$$$\Rightarrow\:\mathrm{2}{y}\frac{{dy}}{{du}}+\mathrm{3}{y}+\mathrm{3}{u}\frac{{dy}}{{du}}−\mathrm{10}{u}=\mathrm{0} \\ $$$$\left(\mathrm{2}{y}+\mathrm{3}{u}\right)\frac{{dy}}{{du}}=\mathrm{10}{u}−\mathrm{3}{y} \\ $$$$\frac{{dy}}{{du}}=\frac{\mathrm{10}{u}−\mathrm{3}{y}}{\mathrm{2}{y}+\mathrm{3}{u}} \\ $$$$\therefore\frac{{dy}}{{dx}}=\frac{\left(\mathrm{10}{u}−\mathrm{3}{y}\right)\left(\mathrm{2}{t}−{u}\right)\left(\mathrm{2}{t}+\mathrm{5}{x}\right)}{\left(\mathrm{2}{y}+\mathrm{3}{u}\right)\left(\mathrm{3}{u}+{t}\right)\left({t}−\mathrm{2}{x}\right)} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com