Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 44951 by rahul 19 last updated on 06/Oct/18

Commented by rahul 19 last updated on 07/Oct/18

Commented by rahul 19 last updated on 07/Oct/18

pls explain the solution!(1^(st) ,2^(nd) line)

$${pls}\:{explain}\:{the}\:{solution}!\left(\mathrm{1}^{{st}} ,\mathrm{2}^{{nd}} {line}\right) \\ $$

Commented by MrW3 last updated on 07/Oct/18

the solution given is not correct, I think.  it ignores the friction caused through  the tension in the rope.

$${the}\:{solution}\:{given}\:{is}\:{not}\:{correct},\:{I}\:{think}. \\ $$$${it}\:{ignores}\:{the}\:{friction}\:{caused}\:{through} \\ $$$${the}\:{tension}\:{in}\:{the}\:{rope}. \\ $$

Answered by MrW3 last updated on 06/Oct/18

Commented by rahul 19 last updated on 07/Oct/18

sir, Ans. is AD I feel the solution is too advance for me . Anyways Thanks!!☺️��

Commented by MrW3 last updated on 07/Oct/18

Commented by MrW3 last updated on 07/Oct/18

G=λgds=λgRdθ  N=(T/R)ds+G sin θ=(T+λgR sin θ)dθ  f=μN=μ(T+λgR sin θ)dθ  T+dT+f=T+G cos θ  dT+μ(T+λgR sin θ)dθ=λgR cos θ dθ  ⇒(dT/dθ)+μT=λgR(cos θ−μ sin θ)  let T=e^(−μθ) S  (dT/dθ)=−μe^(−μθ) S+e^(−μθ) (dS/dθ)  −μe^(−μθ) S+e^(−μθ) (dS/dθ)+μe^(−μθ) S=λgR(cos θ−μ sin θ)  e^(−μθ) (dS/dθ)=λgR(cos θ−μ sin θ)  ⇒(dS/dθ)=λgRe^(μθ) (cos θ−μ sin θ)  S=λgR∫e^(μθ)  (cos θ−μ sin θ)dθ  =((λgRe^(μθ) {2μ cos θ+(1−μ^2 )sin θ})/(1+μ^2 ))+C  e^(μθ) T=((λgRe^(μθ) {2μ cos θ+(1−μ^2 )sin θ})/(1+μ^2 ))+C  ⇒T=((λgR{2μ cos θ+(1−μ^2 )sin θ})/(1+μ^2 ))+Ce^(−μθ)   at θ=0: T=0  ((2λgRμ)/(1+μ^2 ))+C=0  C=−((2λgRμ)/(1+μ^2 ))  ⇒T=((λgR)/(1+μ^2 ))[(1−μ^2 ) sin θ+2μ(cos θ−e^(−μθ) )]  the friction coeifficient is big enough  if no tension force is needed to hold  the rope at its topmost point.  at θ=(π/2): T=^(!) 0  ((λgR)/(1+μ^2 ))(1−μ^2 −2μe^(−((μπ)/2)) )=0  ⇒1−μ^2 −2μe^(−((μπ)/2)) =0  ⇒μ≈0.7324  [Option B gives (1/(√2))=0.707]    (dT/dθ)=...[(1−μ^2 )cos θ+2μ(−sin θ+μe^(−μθ) )]=0  ⇒((sin θ−μe^(−μθ) )/(cos θ))=((1−μ^2 )/(2μ))  ⇒θ in terms of μ    with μ=0.7324⇒θ=41.74°  ⇒T_(max) =0.353λRg  [Option D gives ((√2)−1)λRg=0.414λRg]

$${G}=\lambda{gds}=\lambda{gRd}\theta \\ $$$${N}=\frac{{T}}{{R}}{ds}+{G}\:\mathrm{sin}\:\theta=\left({T}+\lambda{gR}\:\mathrm{sin}\:\theta\right){d}\theta \\ $$$${f}=\mu{N}=\mu\left({T}+\lambda{gR}\:\mathrm{sin}\:\theta\right){d}\theta \\ $$$${T}+{dT}+{f}={T}+{G}\:\mathrm{cos}\:\theta \\ $$$${dT}+\mu\left({T}+\lambda{gR}\:\mathrm{sin}\:\theta\right){d}\theta=\lambda{gR}\:\mathrm{cos}\:\theta\:{d}\theta \\ $$$$\Rightarrow\frac{{dT}}{{d}\theta}+\mu{T}=\lambda{gR}\left(\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta\right) \\ $$$${let}\:{T}={e}^{−\mu\theta} {S} \\ $$$$\frac{{dT}}{{d}\theta}=−\mu{e}^{−\mu\theta} {S}+{e}^{−\mu\theta} \frac{{dS}}{{d}\theta} \\ $$$$−\mu{e}^{−\mu\theta} {S}+{e}^{−\mu\theta} \frac{{dS}}{{d}\theta}+\mu{e}^{−\mu\theta} {S}=\lambda{gR}\left(\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta\right) \\ $$$${e}^{−\mu\theta} \frac{{dS}}{{d}\theta}=\lambda{gR}\left(\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow\frac{{dS}}{{d}\theta}=\lambda{gRe}^{\mu\theta} \left(\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta\right) \\ $$$${S}=\lambda{gR}\int{e}^{\mu\theta} \:\left(\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta\right){d}\theta \\ $$$$=\frac{\lambda{gRe}^{\mu\theta} \left\{\mathrm{2}\mu\:\mathrm{cos}\:\theta+\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{sin}\:\theta\right\}}{\mathrm{1}+\mu^{\mathrm{2}} }+{C} \\ $$$${e}^{\mu\theta} {T}=\frac{\lambda{gRe}^{\mu\theta} \left\{\mathrm{2}\mu\:\mathrm{cos}\:\theta+\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{sin}\:\theta\right\}}{\mathrm{1}+\mu^{\mathrm{2}} }+{C} \\ $$$$\Rightarrow{T}=\frac{\lambda{gR}\left\{\mathrm{2}\mu\:\mathrm{cos}\:\theta+\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{sin}\:\theta\right\}}{\mathrm{1}+\mu^{\mathrm{2}} }+{Ce}^{−\mu\theta} \\ $$$${at}\:\theta=\mathrm{0}:\:{T}=\mathrm{0} \\ $$$$\frac{\mathrm{2}\lambda{gR}\mu}{\mathrm{1}+\mu^{\mathrm{2}} }+{C}=\mathrm{0} \\ $$$${C}=−\frac{\mathrm{2}\lambda{gR}\mu}{\mathrm{1}+\mu^{\mathrm{2}} } \\ $$$$\Rightarrow{T}=\frac{\lambda{gR}}{\mathrm{1}+\mu^{\mathrm{2}} }\left[\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\:\mathrm{sin}\:\theta+\mathrm{2}\mu\left(\mathrm{cos}\:\theta−{e}^{−\mu\theta} \right)\right] \\ $$$${the}\:{friction}\:{coeifficient}\:{is}\:{big}\:{enough} \\ $$$${if}\:{no}\:{tension}\:{force}\:{is}\:{needed}\:{to}\:{hold} \\ $$$${the}\:{rope}\:{at}\:{its}\:{topmost}\:{point}. \\ $$$${at}\:\theta=\frac{\pi}{\mathrm{2}}:\:{T}\overset{!} {=}\mathrm{0} \\ $$$$\frac{\lambda{gR}}{\mathrm{1}+\mu^{\mathrm{2}} }\left(\mathrm{1}−\mu^{\mathrm{2}} −\mathrm{2}\mu{e}^{−\frac{\mu\pi}{\mathrm{2}}} \right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}−\mu^{\mathrm{2}} −\mathrm{2}\mu{e}^{−\frac{\mu\pi}{\mathrm{2}}} =\mathrm{0} \\ $$$$\Rightarrow\mu\approx\mathrm{0}.\mathrm{7324} \\ $$$$\left[{Option}\:{B}\:{gives}\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}=\mathrm{0}.\mathrm{707}\right] \\ $$$$ \\ $$$$\frac{{dT}}{{d}\theta}=...\left[\left(\mathrm{1}−\mu^{\mathrm{2}} \right)\mathrm{cos}\:\theta+\mathrm{2}\mu\left(−\mathrm{sin}\:\theta+\mu{e}^{−\mu\theta} \right)\right]=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\theta−\mu{e}^{−\mu\theta} }{\mathrm{cos}\:\theta}=\frac{\mathrm{1}−\mu^{\mathrm{2}} }{\mathrm{2}\mu} \\ $$$$\Rightarrow\theta\:{in}\:{terms}\:{of}\:\mu \\ $$$$ \\ $$$${with}\:\mu=\mathrm{0}.\mathrm{7324}\Rightarrow\theta=\mathrm{41}.\mathrm{74}° \\ $$$$\Rightarrow{T}_{{max}} =\mathrm{0}.\mathrm{353}\lambda{Rg} \\ $$$$\left[{Option}\:{D}\:{gives}\:\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\lambda{Rg}=\mathrm{0}.\mathrm{414}\lambda{Rg}\right] \\ $$

Commented by ajfour last updated on 07/Oct/18

yes Sir, true.

$${yes}\:{Sir},\:{true}. \\ $$

Commented by MrW3 last updated on 07/Oct/18

If we ignore the friction caused by the  tension force in rope, i.e. if we ignore  the term μT in the eqn.  (dT/dθ)+μT=λgR(cos θ−μ sin θ),  then we will get  (dT/dθ)=λgR(cos θ−μ sin θ)  ⇒T=λgR(sin θ+μ cos θ)+C  at θ=0, T=0⇒C=−μλRg  ⇒T=λgR{sin θ+μ(cos θ−1)}  at θ=(π/2),T=0:  λgR{1−μ}=0⇒μ=1    (dT/dθ)=λRg{cos θ−μ sin θ}=0  ⇒cos θ−μ sin θ=0  ⇒tan θ=(1/μ)=1⇒θ=(π/4)  T_(max) =λRg{((√2)/2)+1×(((√2)/2)−1)}=λRg((√2)−1)    you see if we ignore the friction   caused by tension in rope, we will  get the same result as given in book.  but why should we ignore it?  that′s why I say that the solution  given in book is not correct (enough).    certainly, as we can see, ignoring that  term makes the solution much easier  than considering that term.

$${If}\:{we}\:{ignore}\:{the}\:{friction}\:{caused}\:{by}\:{the} \\ $$$${tension}\:{force}\:{in}\:{rope},\:{i}.{e}.\:{if}\:{we}\:{ignore} \\ $$$${the}\:{term}\:\mu{T}\:{in}\:{the}\:{eqn}. \\ $$$$\frac{{dT}}{{d}\theta}+\mu{T}=\lambda{gR}\left(\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta\right), \\ $$$${then}\:{we}\:{will}\:{get} \\ $$$$\frac{{dT}}{{d}\theta}=\lambda{gR}\left(\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow{T}=\lambda{gR}\left(\mathrm{sin}\:\theta+\mu\:\mathrm{cos}\:\theta\right)+{C} \\ $$$${at}\:\theta=\mathrm{0},\:{T}=\mathrm{0}\Rightarrow{C}=−\mu\lambda{Rg} \\ $$$$\Rightarrow{T}=\lambda{gR}\left\{\mathrm{sin}\:\theta+\mu\left(\mathrm{cos}\:\theta−\mathrm{1}\right)\right\} \\ $$$${at}\:\theta=\frac{\pi}{\mathrm{2}},{T}=\mathrm{0}: \\ $$$$\lambda{gR}\left\{\mathrm{1}−\mu\right\}=\mathrm{0}\Rightarrow\mu=\mathrm{1} \\ $$$$ \\ $$$$\frac{{dT}}{{d}\theta}=\lambda{Rg}\left\{\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta\right\}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\theta−\mu\:\mathrm{sin}\:\theta=\mathrm{0} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{\mathrm{1}}{\mu}=\mathrm{1}\Rightarrow\theta=\frac{\pi}{\mathrm{4}} \\ $$$${T}_{{max}} =\lambda{Rg}\left\{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\mathrm{1}×\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}−\mathrm{1}\right)\right\}=\lambda{Rg}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$$$ \\ $$$${you}\:{see}\:{if}\:{we}\:{ignore}\:{the}\:{friction}\: \\ $$$${caused}\:{by}\:{tension}\:{in}\:{rope},\:{we}\:{will} \\ $$$${get}\:{the}\:{same}\:{result}\:{as}\:{given}\:{in}\:{book}. \\ $$$${but}\:{why}\:{should}\:{we}\:{ignore}\:{it}? \\ $$$${that}'{s}\:{why}\:{I}\:{say}\:{that}\:{the}\:{solution} \\ $$$${given}\:{in}\:{book}\:{is}\:{not}\:{correct}\:\left({enough}\right). \\ $$$$ \\ $$$${certainly},\:{as}\:{we}\:{can}\:{see},\:{ignoring}\:{that} \\ $$$${term}\:{makes}\:{the}\:{solution}\:{much}\:{easier} \\ $$$${than}\:{considering}\:{that}\:{term}. \\ $$

Commented by rahul 19 last updated on 07/Oct/18

yes sir! Definitely problem is not clear.  Now it′s understoodable :)

$${yes}\:{sir}!\:{Definitely}\:{problem}\:{is}\:{not}\:{clear}. \\ $$$$\left.{Now}\:{it}'{s}\:{understoodable}\::\right) \\ $$

Commented by MrW3 last updated on 07/Oct/18

Commented by MrW3 last updated on 07/Oct/18

Diagram above shows the case μ=1.  Upon θ=74° the tension in rope is zero.  The maximal tension in rope is  0.28λRg which occurs at θ=33.7°.

$${Diagram}\:{above}\:{shows}\:{the}\:{case}\:\mu=\mathrm{1}. \\ $$$${Upon}\:\theta=\mathrm{74}°\:{the}\:{tension}\:{in}\:{rope}\:{is}\:{zero}. \\ $$$${The}\:{maximal}\:{tension}\:{in}\:{rope}\:{is} \\ $$$$\mathrm{0}.\mathrm{28}\lambda{Rg}\:{which}\:{occurs}\:{at}\:\theta=\mathrm{33}.\mathrm{7}°. \\ $$

Commented by MrW3 last updated on 07/Oct/18

This diagram shows the case μ=0.5.  To keep the rope from sliding, a tension  force of 0.23λRg is needed to hold the  rope at its topmost point.  The max. tension in rope is 0.457λRg  which occurs at θ=51.6°.

$${This}\:{diagram}\:{shows}\:{the}\:{case}\:\mu=\mathrm{0}.\mathrm{5}. \\ $$$${To}\:{keep}\:{the}\:{rope}\:{from}\:{sliding},\:{a}\:{tension} \\ $$$${force}\:{of}\:\mathrm{0}.\mathrm{23}\lambda{Rg}\:{is}\:{needed}\:{to}\:{hold}\:{the} \\ $$$${rope}\:{at}\:{its}\:{topmost}\:{point}. \\ $$$${The}\:{max}.\:{tension}\:{in}\:{rope}\:{is}\:\mathrm{0}.\mathrm{457}\lambda{Rg} \\ $$$${which}\:{occurs}\:{at}\:\theta=\mathrm{51}.\mathrm{6}°. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com