Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 44988 by peter frank last updated on 07/Oct/18

A tangent to ellipse (x^2 /a^(2 ) )+(y^2 /b^2 )=1 at point p meets the minor axis  at L if the normal at p meets the major axis at m.find the locus of midpoint LM

$$\boldsymbol{\mathrm{A}}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{ellipse}\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}\:} }+\frac{\mathrm{y}^{\mathrm{2}} }{\mathrm{b}^{\mathrm{2}} }=\mathrm{1}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{point}}\:\boldsymbol{\mathrm{p}}\:\boldsymbol{\mathrm{meets}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{minor}}\:\boldsymbol{\mathrm{axis}} \\ $$$$\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{L}}\:\boldsymbol{\mathrm{if}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{normal}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{p}}\:\boldsymbol{\mathrm{meets}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{major}}\:\boldsymbol{\mathrm{axis}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{m}}.\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{locus}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{midpoint}}\:\boldsymbol{\mathrm{LM}} \\ $$

Answered by MrW3 last updated on 07/Oct/18

(x^2 /a^2 )+(y^2 /b^2 )=1  ((2x)/a^2 )+((2y)/b^2 )×(dy/dx)=1  (dy/dx)=−((b^2 x)/(a^2 y))  Point P(u,v)  (u^2 /a^2 )+(v^2 /b^2 )=1     ...(i)  eqn. of tangent PL:  ((y−v)/(x−u))=−((b^2 u)/(a^2 v))  Point L(0,y_1 )  ((y_1 −v)/(−u))=−((b^2 u)/(a^2 v))  ⇒y_1 =v(1+((b^2 u^2 )/(a^2 v^2 )))  eqn. of normal PM:  ((y−v)/(x−u))=((a^2 v)/(b^2 u))  Point M(x_2 ,0)  ((−v)/(x_2 −u))=((a^2 v)/(b^2 u))  ⇒x_2 =u(1−(b^2 /a^2 ))  Midpoint of LM is (p,q) with  p=(x_2 /2)=(u/2)(1−(b^2 /a^2 ))=((u(a^2 −b^2 ))/(2a^2 ))  q=(y_1 /2)=(v/2)(1+((b^2 u^2 )/(a^2 v^2 )))=(v/2)((v^2 /b^2 )+(u^2 /a^2 ))(b^2 /v^2 )=(b^2 /(2v))  ⇒u=((2a^2 p)/(a^2 −b^2 ))  ⇒v=(b^2 /(2q))  putting this into (i):  ((4a^4 p^2 )/((a^2 −b^2 )a^2 ))+(b^4 /(4q^2 b^2 ))=1  ⇒((4a^2 p^2 )/(a^2 −b^2 ))+(b^2 /(4q^2 ))=1  or  ⇒((4a^2 x^2 )/(a^2 −b^2 ))+(b^2 /(4y^2 ))=1

$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{\mathrm{2}{x}}{{a}^{\mathrm{2}} }+\frac{\mathrm{2}{y}}{{b}^{\mathrm{2}} }×\frac{{dy}}{{dx}}=\mathrm{1} \\ $$$$\frac{{dy}}{{dx}}=−\frac{{b}^{\mathrm{2}} {x}}{{a}^{\mathrm{2}} {y}} \\ $$$${Point}\:{P}\left({u},{v}\right) \\ $$$$\frac{{u}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{v}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:\:\:...\left({i}\right) \\ $$$${eqn}.\:{of}\:{tangent}\:{PL}: \\ $$$$\frac{{y}−{v}}{{x}−{u}}=−\frac{{b}^{\mathrm{2}} {u}}{{a}^{\mathrm{2}} {v}} \\ $$$${Point}\:{L}\left(\mathrm{0},{y}_{\mathrm{1}} \right) \\ $$$$\frac{{y}_{\mathrm{1}} −{v}}{−{u}}=−\frac{{b}^{\mathrm{2}} {u}}{{a}^{\mathrm{2}} {v}} \\ $$$$\Rightarrow{y}_{\mathrm{1}} ={v}\left(\mathrm{1}+\frac{{b}^{\mathrm{2}} {u}^{\mathrm{2}} }{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }\right) \\ $$$${eqn}.\:{of}\:{normal}\:{PM}: \\ $$$$\frac{{y}−{v}}{{x}−{u}}=\frac{{a}^{\mathrm{2}} {v}}{{b}^{\mathrm{2}} {u}} \\ $$$${Point}\:{M}\left({x}_{\mathrm{2}} ,\mathrm{0}\right) \\ $$$$\frac{−{v}}{{x}_{\mathrm{2}} −{u}}=\frac{{a}^{\mathrm{2}} {v}}{{b}^{\mathrm{2}} {u}} \\ $$$$\Rightarrow{x}_{\mathrm{2}} ={u}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right) \\ $$$${Midpoint}\:{of}\:{LM}\:{is}\:\left({p},{q}\right)\:{with} \\ $$$${p}=\frac{{x}_{\mathrm{2}} }{\mathrm{2}}=\frac{{u}}{\mathrm{2}}\left(\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)=\frac{{u}\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}{\mathrm{2}{a}^{\mathrm{2}} } \\ $$$${q}=\frac{{y}_{\mathrm{1}} }{\mathrm{2}}=\frac{{v}}{\mathrm{2}}\left(\mathrm{1}+\frac{{b}^{\mathrm{2}} {u}^{\mathrm{2}} }{{a}^{\mathrm{2}} {v}^{\mathrm{2}} }\right)=\frac{{v}}{\mathrm{2}}\left(\frac{{v}^{\mathrm{2}} }{{b}^{\mathrm{2}} }+\frac{{u}^{\mathrm{2}} }{{a}^{\mathrm{2}} }\right)\frac{{b}^{\mathrm{2}} }{{v}^{\mathrm{2}} }=\frac{{b}^{\mathrm{2}} }{\mathrm{2}{v}} \\ $$$$\Rightarrow{u}=\frac{\mathrm{2}{a}^{\mathrm{2}} {p}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\Rightarrow{v}=\frac{{b}^{\mathrm{2}} }{\mathrm{2}{q}} \\ $$$${putting}\:{this}\:{into}\:\left({i}\right): \\ $$$$\frac{\mathrm{4}{a}^{\mathrm{4}} {p}^{\mathrm{2}} }{\left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){a}^{\mathrm{2}} }+\frac{{b}^{\mathrm{4}} }{\mathrm{4}{q}^{\mathrm{2}} {b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{4}{a}^{\mathrm{2}} {p}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }+\frac{{b}^{\mathrm{2}} }{\mathrm{4}{q}^{\mathrm{2}} }=\mathrm{1} \\ $$$${or} \\ $$$$\Rightarrow\frac{\mathrm{4}{a}^{\mathrm{2}} {x}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }+\frac{{b}^{\mathrm{2}} }{\mathrm{4}{y}^{\mathrm{2}} }=\mathrm{1} \\ $$

Commented by peter frank last updated on 07/Oct/18

thank you once gain sir.i really appreciate your effort

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{once}\:\mathrm{gain}\:\mathrm{sir}.\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{effort} \\ $$

Commented by MrW3 last updated on 07/Oct/18

Commented by MrW3 last updated on 07/Oct/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com