Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45020 by rahul 19 last updated on 07/Oct/18

Commented by maxmathsup by imad last updated on 07/Oct/18

let decompose F(x) =(1/(x^3  +1)) ⇒F(x)=(1/((x+1)(x^2 −x+1)))  =(a/(x+1)) +((bx+c)/(x^2 −x +1))  a =lim_(x→−1) (x+1)F(x) =(1/3)  lim_(x→+∞) xF(x) =0 =a+b ⇒b =−(1/3) ⇒ F(x)=(1/(3(x+1))) +((−(1/3)x+c)/(x^2 −x+1))  F(0) =(1/3) +c =1 ⇒F(x) =(2/3) ⇒F(x) =(1/(3(x+1))) +(1/3)((−x+2)/(x^2 −x+1)) ⇒  ∫_0 ^1  F(x)dx =(1/3) ∫_0 ^1   (dx/(x+1)) −(1/3) ∫_0 ^1    ((x−2)/(x^2 −x +1))dx  =(1/3)ln(2) −(1/6) ∫_0 ^1   ((2x−1−3)/(x^2 −x +1))dx  =((ln(2))/3) −(1/6)[ln∣x^2 −x+1∣]_0 ^1  +(1/2) ∫_0 ^1    (dx/((x−(1/2))^2  +(3/4)))  =_(x−(1/2)=((√3)/2)t) ((ln(2))/3)  +(1/2) (4/3)∫_(−(1/(√3))) ^(1/(√3))     (1/(t^2  +1)) ((√3)/2)dt =((ln(2))/3) +(1/(√3)) { arctan((1/(√3)))+arctan((1/(√3)))}  =((ln(2))/3) +(2/(√3)) (π/6) =((ln(2))/3) +(π/(3(√3))) =λ .

letdecomposeF(x)=1x3+1F(x)=1(x+1)(x2x+1)=ax+1+bx+cx2x+1a=limx1(x+1)F(x)=13limx+xF(x)=0=a+bb=13F(x)=13(x+1)+13x+cx2x+1F(0)=13+c=1F(x)=23F(x)=13(x+1)+13x+2x2x+101F(x)dx=1301dxx+11301x2x2x+1dx=13ln(2)16012x13x2x+1dx=ln(2)316[lnx2x+1]01+1201dx(x12)2+34=x12=32tln(2)3+124313131t2+132dt=ln(2)3+13{arctan(13)+arctan(13)}=ln(2)3+23π6=ln(2)3+π33=λ.

Commented by maxmathsup by imad last updated on 07/Oct/18

let calculate L let A_n = {Π_(k=1) ^n    (1+(k^2 /n^2 ))}^(1/n)  ⇒  ln(A_n ) =(1/n) Σ_(k=1) ^n  ln(1+(k^2 /n^2 )) is a Reiman sum ⇒  lim_(n→+∞) ln(A_n ) =∫_0 ^1 ln(1+x^2 )dx  by parts  =[xln(1+x^2 )]_0 ^1  −∫_0 ^1   x ((2x)/(1+x^2 ))dx =ln(2)−2 ∫_0 ^1   ((1+x^2 −1)/(1+x^2 ))dx  =ln(2)−2  +2 ∫_0 ^1    (dx/(1+x^2 )) =ln(2)−2 +2 [arctanx]_0 ^1 =ln(2)−2+2 (π/4)  =ln(2)−2+(π/2)  lim_(n→+∞) A_n = e^(ln(2)−2 +(π/2))  = 2 (e^(π/2) /e^2 ) =L  we have ln(L) =ln(2)−2 +(π/2)  and 3λ =ln(2) +(π/(√3)) ⇒  3λ +ln(L) =2ln(2) −2 +((1/2) +(1/(√3)))π  so any answer given is correct...

letcalculateLletAn={k=1n(1+k2n2)}1nln(An)=1nk=1nln(1+k2n2)isaReimansumlimn+ln(An)=01ln(1+x2)dxbyparts=[xln(1+x2)]0101x2x1+x2dx=ln(2)2011+x211+x2dx=ln(2)2+201dx1+x2=ln(2)2+2[arctanx]01=ln(2)2+2π4=ln(2)2+π2limn+An=eln(2)2+π2=2eπ2e2=Lwehaveln(L)=ln(2)2+π2and3λ=ln(2)+π33λ+ln(L)=2ln(2)2+(12+13)πsoanyanswergiveniscorrect...

Commented by maxmathsup by imad last updated on 07/Oct/18

so any answer given is not correct...

soanyanswergivenisnotcorrect...

Commented by rahul 19 last updated on 08/Oct/18

thanks prof Abdo☺️

Commented by maxmathsup by imad last updated on 08/Oct/18

you are welcome sir.

youarewelcomesir.

Answered by tanmay.chaudhury50@gmail.com last updated on 07/Oct/18

λ=∫_0 ^1 (dx/(1+x^3 ))  (1/(1+x^3 ))=(a/(1+x))+((bx+c)/(1−x+x^2 ))  1=a(1−x+x^2 )+(1+x)(bx+c)  1=(a−ax+ax^2 )+(bx+c+bx^2 +cx)  1=(a+c)+x(−a+b+c)+x^2 (a+b)  a+c=1  −a+b+c=0  a+b=0  −a−a+1−a=0   a=(1/3)   b=−(1/3) c=(2/3)  λ=∫_0 ^1 {(a/(1+x))+((bx+c)/(1−x+x^2 ))}dx  λ=(1/3)∫_0 ^1 (dx/(1+x))+∫_0 ^1 ((((−1)/3)x+(2/3))/(1−x+x^2 ))dx  λ=(1/3)∫_0 ^1 (dx/(1+x))+(1/3)∫_0 ^1 ((−x+2)/(1−x+x^2 ))dx  =(1/3)∫_0 ^1 (dx/(1+x))−(1/3)×(1/2)∫_0 ^1 ((2x−1−3)/(1−x+x^2 ))dx  =(1/3)∫_0 ^1 (dx/(1+x))−(1/6)∫_0 ^1 ((d(1−x+x^2 ))/(1−x+x^2 ))dx+(1/2)∫_0 ^1 (dx/(x^2 −2.x.(1/2)+(1/4)+(3/4)))  =(1/3)∫_0 ^1 (dx/(1+x))−(1/6)∫_0 ^1 ((d(1−x+x^2 ))/(1−x+x^2 ))+(1/2)∫_0 ^1 (dx/((x−(1/2))^2 +((((√3) )/2))^2 ))  =(1/3)∣ln(1+x)∣_0 ^1 −(1/6)∣ln(1−x+x^2 )∣_0 ^1  +(1/2)×(2/(√3))∣tan^(−1) (((x−(1/2))/(((√3) )/2)))∣_0 ^1   =(1/3)ln2+(1/(√3)){tan^(−1) ((1/(√3)))−tan^(−1) (((−1)/(√3)))}  =(1/3)ln2+(1/(√3))×((2π)/6)  =(1/3)ln2+(π/(3(√3)))  wait to find L

λ=01dx1+x311+x3=a1+x+bx+c1x+x21=a(1x+x2)+(1+x)(bx+c)1=(aax+ax2)+(bx+c+bx2+cx)1=(a+c)+x(a+b+c)+x2(a+b)a+c=1a+b+c=0a+b=0aa+1a=0a=13b=13c=23λ=01{a1+x+bx+c1x+x2}dxλ=1301dx1+x+0113x+231x+x2dxλ=1301dx1+x+1301x+21x+x2dx=1301dx1+x13×12012x131x+x2dx=1301dx1+x1601d(1x+x2)1x+x2dx+1201dxx22.x.12+14+34=1301dx1+x1601d(1x+x2)1x+x2+1201dx(x12)2+(32)2=13ln(1+x)0116ln(1x+x2)01+12×23tan1(x1232)01=13ln2+13{tan1(13)tan1(13)}=13ln2+13×2π6=13ln2+π33waittofindL

Answered by tanmay.chaudhury50@gmail.com last updated on 07/Oct/18

L=lim_(n→∞)  [Π_(r=1) ^n (((n^2 +r^2 ))/n^2 )]^(1/n)   =lim_(n→∞) [{1+((1/n))^2 }{1+((2/n))^2 }{1+((3/n))^2 }...{1+((n/n))^2 }]^(1/n)   h=(1/n)  lnL=lim_(h→0) h[ln(1+1^2 h^2 )+ln(1+2^2 h^2 )+ln(1+3^2 h^2 )+...+ln(1+n^2 h^2 )]  lnL=∫_0 ^1 ln(1+x^2 )dx  I_1 =∫ln(1+x^2 )dx  =ln(1+x^2 )×x−∫((2x×x)/(1+x^2 ))dx  =xln(1+x^2 )−2∫((1+x^2 −1)/(1+x^2 ))dx  =xln(1+x^2 )−2∫(1−(1/(1+x^2 )))dx  =xln(1+x^2 )−2[x−tan^(−1) x]  lnL=∣xln(1+x^2 )−2x+2tan^(−1) x∣_0 ^1   lnL=[{ln2−2+2tan^(−1) 1}]  lnL=ln2−2+2×(π/4)  lnL=ln2−2+(π/2)      3λ=ln2+(π/(√3))     lnL=ln2−2+(π/2)  3λ−lnL=2+π((1/(√3))−(1/2))   pls check...

L=limn[nr=1(n2+r2)n2]1n=limn[{1+(1n)2}{1+(2n)2}{1+(3n)2}...{1+(nn)2}]1nh=1nlnL=limh0h[ln(1+12h2)+ln(1+22h2)+ln(1+32h2)+...+ln(1+n2h2)]lnL=01ln(1+x2)dxI1=ln(1+x2)dx=ln(1+x2)×x2x×x1+x2dx=xln(1+x2)21+x211+x2dx=xln(1+x2)2(111+x2)dx=xln(1+x2)2[xtan1x]lnL=∣xln(1+x2)2x+2tan1x01lnL=[{ln22+2tan11}]lnL=ln22+2×π4lnL=ln22+π23λ=ln2+π3lnL=ln22+π23λlnL=2+π(1312)plscheck...

Commented by rahul 19 last updated on 08/Oct/18

thanks sir!☺️

Terms of Service

Privacy Policy

Contact: info@tinkutara.com