Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 4505 by Yozzii last updated on 03/Feb/16

Commented by Yozzii last updated on 03/Feb/16

△ACD and △DBE are equilateral.  F is the midpoint of AE and G is the  midpoint of BC. D is a point on the  line AB. Prove that △FGD is   equilateral.   (The diagram is only a guide.)

$$\bigtriangleup{ACD}\:{and}\:\bigtriangleup{DBE}\:{are}\:{equilateral}. \\ $$$${F}\:{is}\:{the}\:{midpoint}\:{of}\:{AE}\:{and}\:{G}\:{is}\:{the} \\ $$$${midpoint}\:{of}\:{BC}.\:{D}\:{is}\:{a}\:{point}\:{on}\:{the} \\ $$$${line}\:{AB}.\:{Prove}\:{that}\:\bigtriangleup{FGD}\:{is}\: \\ $$$${equilateral}.\: \\ $$$$\left({The}\:{diagram}\:{is}\:{only}\:{a}\:{guide}.\right) \\ $$

Answered by Rasheed Soomro last updated on 05/Feb/16

^• Let common vertex of triangles D=(0,0)  and AD and DB are along x-axis.  (AD and DB are collinear)  ^• Let each side of △ADC=a units  and each side of △BDE=b units  ^• Let A is on left side of D and B  is on right side of D   So A=(−a,0) and B=(b,0)  It can be shown easily  that C=(−(a/2),((√3)/2)a) and E=((b/2),((√3)/2)b)  G is midpoint of BC  So  G=( (1/2)(−(a/2)+b),(1/2)(((√3)/2)a+0) )=(((2b−a)/4),(((√3)a)/4))  F is midpoint of AE  So F=((1/2)(−a+(b/2)),(1/2)(((√3)/2)b+0))=(((b−2a)/4),(((√3) b)/4))  Now in △FGD  FG=(√((((2b−a)/4)−((b−2a)/4))^2 +((((√3)a)/4)−(((√3) b)/4))^2 ))          =(√((((b+a)^2 )/(16))+((3( a−b)^2 )/(16))))=          =((√(a^2 +2ab+b^2 +3a^2 −6ab+3b^2 ))/4)          =((√(4a^2 −4ab+4b^2 ))/4)=(1/2)(√(a^2 −ab+b^2 ))  FD=(√((((b−2a)/4)−0)^2 +((((√3) b)/4)−0)^2 ))          =(√((b^2 −4ab+4a^2 +3b^2 )/(16)))=(1/2)(√(a^2 −ab+b^2 ))  GD=(√((((2b−a)/4)−0)^2 +((((√3)a)/4)−0)^2 ))          =(√((a^2 −4ab+4b^2 +3a^2 )/(16)))=(1/2)(√(a^2 −ab+b^2 ))  ∵   FG=FD=GD=(1/2)(√(a^2 −ab+b^2 ))  ∴ △GFD  is an EQUILATERAL Triangle

$$\:^{\bullet} {Let}\:{common}\:{vertex}\:{of}\:{triangles}\:{D}=\left(\mathrm{0},\mathrm{0}\right) \\ $$$${and}\:{AD}\:{and}\:{DB}\:{are}\:{along}\:{x}-{axis}. \\ $$$$\left({AD}\:{and}\:{DB}\:{are}\:{collinear}\right) \\ $$$$\:^{\bullet} {Let}\:{each}\:{side}\:{of}\:\bigtriangleup{ADC}={a}\:{units} \\ $$$${and}\:{each}\:{side}\:{of}\:\bigtriangleup{BDE}={b}\:{units} \\ $$$$\:^{\bullet} {Let}\:{A}\:{is}\:{on}\:{left}\:{side}\:{of}\:{D}\:{and}\:{B} \\ $$$${is}\:{on}\:{right}\:{side}\:{of}\:{D} \\ $$$$\:{So}\:{A}=\left(−{a},\mathrm{0}\right)\:{and}\:{B}=\left({b},\mathrm{0}\right) \\ $$$${It}\:{can}\:{be}\:{shown}\:{easily} \\ $$$${that}\:{C}=\left(−\frac{{a}}{\mathrm{2}},\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{a}\right)\:{and}\:{E}=\left(\frac{{b}}{\mathrm{2}},\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{b}\right) \\ $$$${G}\:{is}\:{midpoint}\:{of}\:{BC} \\ $$$${So}\:\:{G}=\left(\:\frac{\mathrm{1}}{\mathrm{2}}\left(−\frac{{a}}{\mathrm{2}}+{b}\right),\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{a}+\mathrm{0}\right)\:\right)=\left(\frac{\mathrm{2}{b}−{a}}{\mathrm{4}},\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{4}}\right) \\ $$$${F}\:{is}\:{midpoint}\:{of}\:{AE} \\ $$$${So}\:{F}=\left(\frac{\mathrm{1}}{\mathrm{2}}\left(−{a}+\frac{{b}}{\mathrm{2}}\right),\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{b}+\mathrm{0}\right)\right)=\left(\frac{{b}−\mathrm{2}{a}}{\mathrm{4}},\frac{\sqrt{\mathrm{3}}\:{b}}{\mathrm{4}}\right) \\ $$$${Now}\:{in}\:\bigtriangleup{FGD} \\ $$$${FG}=\sqrt{\left(\frac{\mathrm{2}{b}−{a}}{\mathrm{4}}−\frac{{b}−\mathrm{2}{a}}{\mathrm{4}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{4}}−\frac{\sqrt{\mathrm{3}}\:{b}}{\mathrm{4}}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:=\sqrt{\frac{\left({b}+{a}\right)^{\mathrm{2}} }{\mathrm{16}}+\frac{\mathrm{3}\left(\:{a}−{b}\right)^{\mathrm{2}} }{\mathrm{16}}}= \\ $$$$\:\:\:\:\:\:\:\:=\frac{\sqrt{{a}^{\mathrm{2}} +\mathrm{2}{ab}+{b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} −\mathrm{6}{ab}+\mathrm{3}{b}^{\mathrm{2}} }}{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:=\frac{\sqrt{\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{ab}+\mathrm{4}{b}^{\mathrm{2}} }}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} } \\ $$$${FD}=\sqrt{\left(\frac{{b}−\mathrm{2}{a}}{\mathrm{4}}−\mathrm{0}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}\:{b}}{\mathrm{4}}−\mathrm{0}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:=\sqrt{\frac{{b}^{\mathrm{2}} −\mathrm{4}{ab}+\mathrm{4}{a}^{\mathrm{2}} +\mathrm{3}{b}^{\mathrm{2}} }{\mathrm{16}}}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} } \\ $$$${GD}=\sqrt{\left(\frac{\mathrm{2}{b}−{a}}{\mathrm{4}}−\mathrm{0}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{4}}−\mathrm{0}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:=\sqrt{\frac{{a}^{\mathrm{2}} −\mathrm{4}{ab}+\mathrm{4}{b}^{\mathrm{2}} +\mathrm{3}{a}^{\mathrm{2}} }{\mathrm{16}}}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} } \\ $$$$\because\:\:\:{FG}={FD}={GD}=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{{a}^{\mathrm{2}} −{ab}+{b}^{\mathrm{2}} } \\ $$$$\therefore\:\bigtriangleup{GFD}\:\:{is}\:{an}\:\mathcal{EQUILATERAL}\:\mathcal{T}{riangle} \\ $$

Commented by Yozzii last updated on 04/Feb/16

Nice approach. Is there an answer that  uses only the axioms and theorems of  Euclidean geometry?

$${Nice}\:{approach}.\:{Is}\:{there}\:{an}\:{answer}\:{that} \\ $$$${uses}\:{only}\:{the}\:{axioms}\:{and}\:{theorems}\:{of} \\ $$$${Euclidean}\:{geometry}? \\ $$

Commented by Rasheed Soomro last updated on 05/Feb/16

There must be axiomatic proof,but I   am not successful to prove yet.

$${There}\:{must}\:{be}\:{axiomatic}\:{proof},{but}\:{I}\: \\ $$$${am}\:{not}\:{successful}\:{to}\:{prove}\:{yet}. \\ $$

Commented by Yozzii last updated on 06/Feb/16

Yes. This area of geometry is alien to  me.

$${Yes}.\:{This}\:{area}\:{of}\:{geometry}\:{is}\:{alien}\:{to} \\ $$$${me}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com