All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 45063 by rahul 19 last updated on 08/Oct/18
∫02πecosθcos(sinθ)dθ=?
Commented by maxmathsup by imad last updated on 08/Oct/18
I=Re(∫02πecosθ+isinθdθ)butecosθ+isinθ=eeiθ=∑n=0∞(eiθ)nn!=∑n=0∞einθn!=∑n=0∞cos(nθ)n!+i∑n=0∞sin(nθ)n!⇒∫02πeeiθdθ=∑n=0∞1n!∫02πcos(nθ)dθ+i∑n=0∞1n!∫02πsin(nθ)dθ=2π+∑n=1∞∫02πcos(nθ)dθ+i∑n=1∞1n!∫02πsin(nθ)dθbut∫02πcos(nθ)dθ=[1nsin(nθ)]02π=0(n⩾1)also∫02πsin(nθ)dθ=[−1ncos(nθ)]02π=0(n⩾1)⇒∫02πeeiθdθ=2π⇒∫02πecosθcos(sinθ)dθ=2π.
Commented by tanmay.chaudhury50@gmail.com last updated on 08/Oct/18
Terms of Service
Privacy Policy
Contact: info@tinkutara.com