Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 45205 by Necxx last updated on 10/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18

w=(√(K/(m+(I/R^2 )))) =(√((K/(m+(M/2))) =(√((1536)/(5+1))) =(√(256)) =16))

$${w}=\sqrt{\frac{{K}}{{m}+\frac{{I}}{{R}^{\mathrm{2}} }}}\:=\sqrt{\frac{{K}}{{m}+\frac{{M}}{\mathrm{2}}}\:=\sqrt{\frac{\mathrm{1536}}{\mathrm{5}+\mathrm{1}}}\:=\sqrt{\mathrm{256}}\:=\mathrm{16}} \\ $$

Commented by Necxx last updated on 12/Oct/18

thanks for the help

$${thanks}\:{for}\:{the}\:{help} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18

trying to prove usingLagrange eqn  (d/dt)((∂L/∂q^. ))−(∂L/∂q)=0  L=T−V   (T=k.E      V=P.E )  T=(1/2)m(x^. )^2 +(1/2)(I/R^2 )(x^. )^2   x^. =(dx/dt)    I=moment of inertia of disc  w=(x^. /R)  V=(1/2)Kx^2     p.E of spring  L=T−V  L=(1/2)m(x^. )^2 +(1/2)(I/R^2 )(x^. )^2  −(1/2)Kx^2   (∂L/∂x^. )=mx^. +(I/R^2 )x^.       (d/dt)((∂L/∂x^. ))=(m+(I/R^2 ))x^(..)         (x^(..) =(d^2 x/dt^2 ))  (∂L/∂x)=−Kx  (d/dt)((∂L/∂x^. ))−(∂L/∂x)=0  (m+(I/R^2 ))x^(..) −kx=0  x^(..) =((k/(m+(I/R^2 ))))x  w=(√(k/(m+(I/R^2 ))))    ((2π)/T_1 )=(√(k/(m+(I/R^2 ))))     T_1 =assumed time period  T_1 =2π.(√((m+(I/R^2 ))/K))

$${trying}\:{to}\:{prove}\:{usingLagrange}\:{eqn} \\ $$$$\frac{{d}}{{dt}}\left(\frac{\partial{L}}{\partial\overset{.} {{q}}}\right)−\frac{\partial{L}}{\partial{q}}=\mathrm{0} \\ $$$${L}={T}−{V}\:\:\:\left({T}={k}.{E}\:\:\:\:\:\:{V}={P}.{E}\:\right) \\ $$$${T}=\frac{\mathrm{1}}{\mathrm{2}}{m}\left(\overset{.} {{x}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\frac{{I}}{{R}^{\mathrm{2}} }\left(\overset{.} {{x}}\right)^{\mathrm{2}} \\ $$$$\overset{.} {{x}}=\frac{{dx}}{{dt}}\:\:\:\:{I}={moment}\:{of}\:{inertia}\:{of}\:{disc} \\ $$$${w}=\frac{\overset{.} {{x}}}{{R}} \\ $$$${V}=\frac{\mathrm{1}}{\mathrm{2}}{Kx}^{\mathrm{2}} \:\:\:\:{p}.{E}\:{of}\:{spring} \\ $$$${L}={T}−{V} \\ $$$${L}=\frac{\mathrm{1}}{\mathrm{2}}{m}\left(\overset{.} {{x}}\right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\frac{{I}}{{R}^{\mathrm{2}} }\left(\overset{.} {{x}}\right)^{\mathrm{2}} \:−\frac{\mathrm{1}}{\mathrm{2}}{Kx}^{\mathrm{2}} \\ $$$$\frac{\partial{L}}{\partial\overset{.} {{x}}}={m}\overset{.} {{x}}+\frac{{I}}{{R}^{\mathrm{2}} }\overset{.} {{x}}\:\:\:\: \\ $$$$\frac{{d}}{{dt}}\left(\frac{\partial{L}}{\partial\overset{.} {{x}}}\right)=\left({m}+\frac{{I}}{{R}^{\mathrm{2}} }\right)\overset{..} {{x}}\:\:\:\:\:\:\:\:\left(\overset{..} {{x}}=\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }\right) \\ $$$$\frac{\partial{L}}{\partial{x}}=−{Kx} \\ $$$$\frac{{d}}{{dt}}\left(\frac{\partial{L}}{\partial\overset{.} {{x}}}\right)−\frac{\partial{L}}{\partial{x}}=\mathrm{0} \\ $$$$\left({m}+\frac{{I}}{{R}^{\mathrm{2}} }\right)\overset{..} {{x}}−{kx}=\mathrm{0} \\ $$$$\overset{..} {{x}}=\left(\frac{{k}}{{m}+\frac{{I}}{{R}^{\mathrm{2}} }}\right){x} \\ $$$${w}=\sqrt{\frac{{k}}{{m}+\frac{{I}}{{R}^{\mathrm{2}} }}}\:\: \\ $$$$\frac{\mathrm{2}\pi}{{T}_{\mathrm{1}} }=\sqrt{\frac{{k}}{{m}+\frac{{I}}{{R}^{\mathrm{2}} }}}\:\:\:\:\:{T}_{\mathrm{1}} ={assumed}\:{time}\:{period} \\ $$$${T}_{\mathrm{1}} =\mathrm{2}\pi.\sqrt{\frac{{m}+\frac{{I}}{{R}^{\mathrm{2}} }}{{K}}}\:\: \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com