Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 45213 by MrW3 last updated on 10/Oct/18

Find ∫(√(a^2 −tan^2  x)) dx (with a>0)  (related to Q45187)

$${Find}\:\int\sqrt{{a}^{\mathrm{2}} −\mathrm{tan}^{\mathrm{2}} \:{x}}\:{dx}\:\left({with}\:{a}>\mathrm{0}\right) \\ $$ $$\left({related}\:{to}\:{Q}\mathrm{45187}\right) \\ $$

Answered by MrW3 last updated on 10/Oct/18

I=∫(√(a^2 −tan^2  x)) dx  let u=tan x  du=(dx/(cos^2  x))=(1+tan^2  x)dx=(1+u^2 )dx  I=∫((√(a^2 −u^2 ))/(1+u^2 ))du  let u=a sin θ ⇒θ=sin^(−1) (u/a)  du=a cos θ dθ  I=a^2 ∫((cos^2  θ)/(1+a^2  sin^2  θ))dθ  let v=tan θ  dv=(dθ/(cos^2  θ))=(1+tan^2  θ)dθ=(v^2 +1)dθ  I=a^2 ∫(dv/({(a^2 +1)v^2 +1}(v^2 +1)))  (1/({(a^2 +1)v^2 +1}(v^2 +1)))=(A/((a^2 +1)v^2 +1))+(B/(v^2 +1))  A(v^2 +1)+B(a^2 +1)v^2 +B=1  {A+B(a^2 +1)}v^2 +(A+B)=1  ⇒A+B=1  ⇒A+B(a^2 +1)=0  ⇒B=−(1/a^2 )  ⇒A=((a^2 +1)/a^2 )  I=a^2 ∫[((a^2 +1)/(a^2 {(a^2 +1)v^2 +1}))−(1/(a^2 (v^2 +1)))]dv  I=∫[((a^2 +1)/((a^2 +1)v^2 +1))−(1/(v^2 +1))]dv  I=(a^2 +1)∫(1/((a^2 +1)v^2 +1))dv−∫(1/(v^2 +1))dv  I=(a^2 +1)I_1 −I_2   I_1 =∫(1/((a^2 +1)v^2 +1))dv  let p=(√(a^2 +1))v  dp=(√(a^2 +1)) dv  I_1 =(1/(√(a^2 +1)))∫(dp/(p^2 +1))=(1/(√(a^2 +1)))tan^(−1) p  I_1 =(1/(√(a^2 +1))) tan^(−1) ((√(a^2 +1))v)  I_1 =(1/(√(a^2 +1))) tan^(−1) ((√(a^2 +1)) tan θ)  I_1 =(1/(√(a^2 +1))) tan^(−1) ((√(a^2 +1)) ((sin θ)/(√(1−sin^2  θ))))  I_1 =(1/(√(a^2 +1))) tan^(−1) ((√(a^2 +1)) ((u/a)/(√(1−(u^2 /a^2 )))))  I_1 =(1/(√(a^2 +1))) tan^(−1) ((√(a^2 +1)) (u/(√(a^2 −u^2 ))))  ⇒I_1 =(1/(√(a^2 +1))) tan^(−1) ((((√(a^2 +1)) tan x)/(√(a^2 −tan^2  x))))  I_2 =∫(1/(v^2 +1))dv=tan^(−1) v=θ=sin^(−1) (u/a)  ⇒I_2 =sin^(−1) (u/a)=sin^(−1) (((tan x)/a))  I=(a^2 +1)I_1 −I_2   ⇒I=((√(a^2 +1))) tan^(−1) ((((√(a^2 +1)) tan x)/(√(a^2 −tan^2  x))))−sin^(−1) (((tan x)/a))+C

$${I}=\int\sqrt{{a}^{\mathrm{2}} −\mathrm{tan}^{\mathrm{2}} \:{x}}\:{dx} \\ $$ $${let}\:{u}=\mathrm{tan}\:{x} \\ $$ $${du}=\frac{{dx}}{\mathrm{cos}^{\mathrm{2}} \:{x}}=\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}\right){dx}=\left(\mathrm{1}+{u}^{\mathrm{2}} \right){dx} \\ $$ $${I}=\int\frac{\sqrt{{a}^{\mathrm{2}} −{u}^{\mathrm{2}} }}{\mathrm{1}+{u}^{\mathrm{2}} }{du} \\ $$ $${let}\:{u}={a}\:\mathrm{sin}\:\theta\:\Rightarrow\theta=\mathrm{sin}^{−\mathrm{1}} \frac{{u}}{{a}} \\ $$ $${du}={a}\:\mathrm{cos}\:\theta\:{d}\theta \\ $$ $${I}={a}^{\mathrm{2}} \int\frac{\mathrm{cos}^{\mathrm{2}} \:\theta}{\mathrm{1}+{a}^{\mathrm{2}} \:\mathrm{sin}^{\mathrm{2}} \:\theta}{d}\theta \\ $$ $${let}\:{v}=\mathrm{tan}\:\theta \\ $$ $${dv}=\frac{{d}\theta}{\mathrm{cos}^{\mathrm{2}} \:\theta}=\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta\right){d}\theta=\left({v}^{\mathrm{2}} +\mathrm{1}\right){d}\theta \\ $$ $${I}={a}^{\mathrm{2}} \int\frac{{dv}}{\left\{\left({a}^{\mathrm{2}} +\mathrm{1}\right){v}^{\mathrm{2}} +\mathrm{1}\right\}\left({v}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$ $$\frac{\mathrm{1}}{\left\{\left({a}^{\mathrm{2}} +\mathrm{1}\right){v}^{\mathrm{2}} +\mathrm{1}\right\}\left({v}^{\mathrm{2}} +\mathrm{1}\right)}=\frac{{A}}{\left({a}^{\mathrm{2}} +\mathrm{1}\right){v}^{\mathrm{2}} +\mathrm{1}}+\frac{{B}}{{v}^{\mathrm{2}} +\mathrm{1}} \\ $$ $${A}\left({v}^{\mathrm{2}} +\mathrm{1}\right)+{B}\left({a}^{\mathrm{2}} +\mathrm{1}\right){v}^{\mathrm{2}} +{B}=\mathrm{1} \\ $$ $$\left\{{A}+{B}\left({a}^{\mathrm{2}} +\mathrm{1}\right)\right\}{v}^{\mathrm{2}} +\left({A}+{B}\right)=\mathrm{1} \\ $$ $$\Rightarrow{A}+{B}=\mathrm{1} \\ $$ $$\Rightarrow{A}+{B}\left({a}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{0} \\ $$ $$\Rightarrow{B}=−\frac{\mathrm{1}}{{a}^{\mathrm{2}} } \\ $$ $$\Rightarrow{A}=\frac{{a}^{\mathrm{2}} +\mathrm{1}}{{a}^{\mathrm{2}} } \\ $$ $${I}={a}^{\mathrm{2}} \int\left[\frac{{a}^{\mathrm{2}} +\mathrm{1}}{{a}^{\mathrm{2}} \left\{\left({a}^{\mathrm{2}} +\mathrm{1}\right){v}^{\mathrm{2}} +\mathrm{1}\right\}}−\frac{\mathrm{1}}{{a}^{\mathrm{2}} \left({v}^{\mathrm{2}} +\mathrm{1}\right)}\right]{dv} \\ $$ $${I}=\int\left[\frac{{a}^{\mathrm{2}} +\mathrm{1}}{\left({a}^{\mathrm{2}} +\mathrm{1}\right){v}^{\mathrm{2}} +\mathrm{1}}−\frac{\mathrm{1}}{{v}^{\mathrm{2}} +\mathrm{1}}\right]{dv} \\ $$ $${I}=\left({a}^{\mathrm{2}} +\mathrm{1}\right)\int\frac{\mathrm{1}}{\left({a}^{\mathrm{2}} +\mathrm{1}\right){v}^{\mathrm{2}} +\mathrm{1}}{dv}−\int\frac{\mathrm{1}}{{v}^{\mathrm{2}} +\mathrm{1}}{dv} \\ $$ $${I}=\left({a}^{\mathrm{2}} +\mathrm{1}\right){I}_{\mathrm{1}} −{I}_{\mathrm{2}} \\ $$ $${I}_{\mathrm{1}} =\int\frac{\mathrm{1}}{\left({a}^{\mathrm{2}} +\mathrm{1}\right){v}^{\mathrm{2}} +\mathrm{1}}{dv} \\ $$ $${let}\:{p}=\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}{v} \\ $$ $${dp}=\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:{dv} \\ $$ $${I}_{\mathrm{1}} =\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\int\frac{{dp}}{{p}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\mathrm{tan}^{−\mathrm{1}} {p} \\ $$ $${I}_{\mathrm{1}} =\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}{v}\right) \\ $$ $${I}_{\mathrm{1}} =\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{tan}\:\theta\right) \\ $$ $${I}_{\mathrm{1}} =\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:\frac{\mathrm{sin}\:\theta}{\sqrt{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta}}\right) \\ $$ $${I}_{\mathrm{1}} =\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:\frac{\frac{{u}}{{a}}}{\sqrt{\mathrm{1}−\frac{{u}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}}\right) \\ $$ $${I}_{\mathrm{1}} =\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:\frac{{u}}{\sqrt{{a}^{\mathrm{2}} −{u}^{\mathrm{2}} }}\right) \\ $$ $$\Rightarrow{I}_{\mathrm{1}} =\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{tan}\:{x}}{\sqrt{{a}^{\mathrm{2}} −\mathrm{tan}^{\mathrm{2}} \:{x}}}\right) \\ $$ $${I}_{\mathrm{2}} =\int\frac{\mathrm{1}}{{v}^{\mathrm{2}} +\mathrm{1}}{dv}=\mathrm{tan}^{−\mathrm{1}} {v}=\theta=\mathrm{sin}^{−\mathrm{1}} \frac{{u}}{{a}} \\ $$ $$\Rightarrow{I}_{\mathrm{2}} =\mathrm{sin}^{−\mathrm{1}} \frac{{u}}{{a}}=\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\:{x}}{{a}}\right) \\ $$ $${I}=\left({a}^{\mathrm{2}} +\mathrm{1}\right){I}_{\mathrm{1}} −{I}_{\mathrm{2}} \\ $$ $$\Rightarrow{I}=\left(\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\right)\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:\mathrm{tan}\:{x}}{\sqrt{{a}^{\mathrm{2}} −\mathrm{tan}^{\mathrm{2}} \:{x}}}\right)−\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\:{x}}{{a}}\right)+{C} \\ $$

Commented bymalwaan last updated on 10/Oct/18

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented byajfour last updated on 10/Oct/18

Thanks a lot Sir!

$${Thanks}\:{a}\:{lot}\:{Sir}! \\ $$

Answered by ajfour last updated on 10/Oct/18

let  tan x = asin ψ  ⇒  dx= ((acos ψdψ)/(1+a^2 sin^2 ψ))  I=∫((a^2 cos^2 ψ)/(1+a^2 sin^2 ψ))dψ  let  tan ψ = t  ⇒ dψ=(dt/(1+t^2 ))  I=∫((a^2 ((1/(1+t^2 )))(dt/((1+t^2 ))))/(1+(a^2 /((1+(1/t^2 ))))))    = ∫((a^2 dt)/((1+t^2 )^2 +a^2 t^2 (1+t^2 )))  ...............................................    = ∫((a^2 dt)/((a^2 +1)t^4 +(a^2 +2)t^2 +1))    = (a^2 /(√(a^2 +1)))∫(((1/t^2 ))/((√(a^2 +1))t^2 +(1/((√(a^2 +1))t^2 ))+((a^2 +2)/(√(a^2 +1)))))dt    let  t(a^2 +1)^(1/4) =bt=z  ⇒    bdt = dz  ⇒ I = ((b^4 −1)/b^2 )∫(((b^2 /z^2 )((dz/b)))/((z+(1/z))^2 +((b^4 +1)/b^2 )−2))     = ((b^4 −1)/(2b))∫(((1+(1/z^2 ))−(1−(1/z^2 )))/((z+(1/z))^2 +(((b^2 −1)/b))^2 )) dz    = ((b^4 −1)/(2b))∫(((1+(1/z^2 ))dz)/((z−(1/z))^2 +(((b^2 +1)/b))^2 ))            −((b^4 −1)/(2b))∫(((1−(1/z^2 ))dz)/((z+(1/z))^2 +(((b^2 −1)/b))^2 ))   I = ((b^4 −1)/(2b))[(b/(b^2 +1))tan^(−1) (((z−(1/z))/((b^2 +1)/b)))−(b/(b^2 −1))tan^(−1) (((z+(1/z))/((b^2 −1)/b)))]+c  And since  bt=z , t=tan 𝛙       asin 𝛙 = tan x  ⇒  tan 𝛙 = z/b        ((az)/(√(z^2 +b^2 ))) = tan x  ∴   z^2  = ((b^2 tan^2 x)/(a^2 −tan^2 x))  ⇒  z = (((a^2 +1)^(1/4) tan x)/(√(a^2 −tan^2 x)))   ; b=(a^2 +1)^(1/4)    I = ((b^4 −1)/(2b))[(b/(b^2 +1))tan^(−1) (((z−(1/z))/((b^2 +1)/b)))−(b/(b^2 −1))tan^(−1) (((z+(1/z))/((b^2 −1)/b)))]+c  .   I= ((b^2 −1)/2)tan^(−1) ((b(z^2 −1))/(z(b^2 +1)))              −((b^2 +1)/2)tan^(−1) ((b(z^2 +1))/(z(b^2 −1)))    .

$${let}\:\:\mathrm{tan}\:{x}\:=\:{a}\mathrm{sin}\:\psi \\ $$ $$\Rightarrow\:\:{dx}=\:\frac{{a}\mathrm{cos}\:\psi{d}\psi}{\mathrm{1}+{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \psi} \\ $$ $${I}=\int\frac{{a}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \psi}{\mathrm{1}+{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \psi}{d}\psi \\ $$ $${let}\:\:\mathrm{tan}\:\psi\:=\:{t}\:\:\Rightarrow\:{d}\psi=\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$ $${I}=\int\frac{{a}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}}{\mathrm{1}+\frac{{a}^{\mathrm{2}} }{\left(\mathrm{1}+\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\right)}} \\ $$ $$\:\:=\:\int\frac{{a}^{\mathrm{2}} {dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{\mathrm{2}} +{a}^{\mathrm{2}} {t}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$ $$............................................... \\ $$ $$\:\:=\:\int\frac{{a}^{\mathrm{2}} {dt}}{\left({a}^{\mathrm{2}} +\mathrm{1}\right){t}^{\mathrm{4}} +\left({a}^{\mathrm{2}} +\mathrm{2}\right){t}^{\mathrm{2}} +\mathrm{1}} \\ $$ $$\:\:=\:\frac{{a}^{\mathrm{2}} }{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}\int\frac{\left(\mathrm{1}/{t}^{\mathrm{2}} \right)}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}{t}^{\mathrm{2}} +\frac{\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}{t}^{\mathrm{2}} }+\frac{{a}^{\mathrm{2}} +\mathrm{2}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}}{dt} \\ $$ $$\:\:{let}\:\:{t}\left({a}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{1}/\mathrm{4}} ={bt}={z} \\ $$ $$\Rightarrow\:\:\:\:{bdt}\:=\:{dz} \\ $$ $$\Rightarrow\:{I}\:=\:\frac{{b}^{\mathrm{4}} −\mathrm{1}}{{b}^{\mathrm{2}} }\int\frac{\frac{{b}^{\mathrm{2}} }{{z}^{\mathrm{2}} }\left(\frac{{dz}}{{b}}\right)}{\left({z}+\frac{\mathrm{1}}{{z}}\right)^{\mathrm{2}} +\frac{{b}^{\mathrm{4}} +\mathrm{1}}{{b}^{\mathrm{2}} }−\mathrm{2}} \\ $$ $$\:\:\:=\:\frac{{b}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2}{b}}\int\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{{z}^{\mathrm{2}} }\right)−\left(\mathrm{1}−\frac{\mathrm{1}}{{z}^{\mathrm{2}} }\right)}{\left({z}+\frac{\mathrm{1}}{{z}}\right)^{\mathrm{2}} +\left(\frac{{b}^{\mathrm{2}} −\mathrm{1}}{{b}}\right)^{\mathrm{2}} }\:{dz} \\ $$ $$\:\:=\:\frac{{b}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2}{b}}\int\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{{z}^{\mathrm{2}} }\right){dz}}{\left({z}−\frac{\mathrm{1}}{{z}}\right)^{\mathrm{2}} +\left(\frac{{b}^{\mathrm{2}} +\mathrm{1}}{{b}}\right)^{\mathrm{2}} } \\ $$ $$\:\:\:\:\:\:\:\:\:\:−\frac{{b}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2}{b}}\int\frac{\left(\mathrm{1}−\frac{\mathrm{1}}{{z}^{\mathrm{2}} }\right){dz}}{\left({z}+\frac{\mathrm{1}}{{z}}\right)^{\mathrm{2}} +\left(\frac{{b}^{\mathrm{2}} −\mathrm{1}}{{b}}\right)^{\mathrm{2}} } \\ $$ $$\:{I}\:=\:\frac{{b}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2}{b}}\left[\frac{{b}}{{b}^{\mathrm{2}} +\mathrm{1}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{z}−\frac{\mathrm{1}}{{z}}}{\frac{{b}^{\mathrm{2}} +\mathrm{1}}{{b}}}\right)−\frac{{b}}{{b}^{\mathrm{2}} −\mathrm{1}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{z}+\frac{\mathrm{1}}{{z}}}{\frac{{b}^{\mathrm{2}} −\mathrm{1}}{{b}}}\right)\right]+{c} \\ $$ $${And}\:{since}\:\:\boldsymbol{{bt}}=\boldsymbol{{z}}\:,\:\boldsymbol{{t}}=\mathrm{tan}\:\boldsymbol{\psi} \\ $$ $$\:\:\:\:\:\boldsymbol{{a}}\mathrm{sin}\:\boldsymbol{\psi}\:=\:\mathrm{tan}\:\boldsymbol{{x}} \\ $$ $$\Rightarrow\:\:\mathrm{tan}\:\boldsymbol{\psi}\:=\:\boldsymbol{{z}}/\boldsymbol{{b}} \\ $$ $$\:\:\:\:\:\:\frac{\boldsymbol{{az}}}{\sqrt{\boldsymbol{{z}}^{\mathrm{2}} +\boldsymbol{{b}}^{\mathrm{2}} }}\:=\:\mathrm{tan}\:\boldsymbol{{x}} \\ $$ $$\therefore\:\:\:\boldsymbol{{z}}^{\mathrm{2}} \:=\:\frac{\boldsymbol{{b}}^{\mathrm{2}} \mathrm{tan}\:^{\mathrm{2}} \boldsymbol{{x}}}{\boldsymbol{{a}}^{\mathrm{2}} −\mathrm{tan}\:^{\mathrm{2}} \boldsymbol{{x}}} \\ $$ $$\Rightarrow\:\:\boldsymbol{{z}}\:=\:\frac{\left(\boldsymbol{{a}}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{1}/\mathrm{4}} \mathrm{tan}\:\boldsymbol{{x}}}{\sqrt{\boldsymbol{{a}}^{\mathrm{2}} −\mathrm{tan}\:^{\mathrm{2}} \boldsymbol{{x}}}}\:\:\:;\:\boldsymbol{{b}}=\left(\boldsymbol{{a}}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{1}/\mathrm{4}} \\ $$ $$\:{I}\:=\:\frac{{b}^{\mathrm{4}} −\mathrm{1}}{\mathrm{2}{b}}\left[\frac{{b}}{{b}^{\mathrm{2}} +\mathrm{1}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{z}−\frac{\mathrm{1}}{{z}}}{\frac{{b}^{\mathrm{2}} +\mathrm{1}}{{b}}}\right)−\frac{{b}}{{b}^{\mathrm{2}} −\mathrm{1}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{z}+\frac{\mathrm{1}}{{z}}}{\frac{{b}^{\mathrm{2}} −\mathrm{1}}{{b}}}\right)\right]+{c}\:\:. \\ $$ $$\:{I}=\:\frac{{b}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \frac{{b}\left({z}^{\mathrm{2}} −\mathrm{1}\right)}{{z}\left({b}^{\mathrm{2}} +\mathrm{1}\right)}\:\:\: \\ $$ $$\:\:\:\:\:\:\:\:\:−\frac{{b}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \frac{{b}\left({z}^{\mathrm{2}} +\mathrm{1}\right)}{{z}\left({b}^{\mathrm{2}} −\mathrm{1}\right)}\:\:\:\:. \\ $$

Commented byMrW3 last updated on 10/Oct/18

thanks sir!

$${thanks}\:{sir}! \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18

∫((a^2 −tan^2 x)/(√(a^2 −tan^2 x)))dx  a^2 ∫(dx/(√(a^2 −tan^2 x)))−∫((sec^2 x−1)/(√(a^2 −tan^2 x)))dx  (a^2 +1)∫(dx/(√(a^2 −tan^2 x)))−∫((sec^2 x dx)/(√(a^2 −tan^2 x)))  I_1 −I_2   I_1 =(a^2 +1)∫((cosxdx)/(√(a^2 cos^2 x−sin^2 x)))  t=sinx   dt=cosx dx  (a^2 +1)∫(dt/(√(a^2 (1−t^2 )−t^2 )))  (a^2 +1)∫(dt/(√(a^2 −t^2 (a^2 +1))))  (a^2 +1)∫(dt/(√((a^2 +1)((a^2 /(a^2 +1)))−t^2 )))  (√(a^2 +1)) ∫(dt/(√(((a^2 /(a^2 +1)))^ −t^2 )))  (√(a^2 +1)) ×sin^(−1) ((t/((√(a^2 /(a^2 +1))) )))  (√(a^2 +1)) ×sin^(−1) (((sinx)/((√(a^2 /(a^2 +1))) )))+c_1   I_2 =∫((sec^2 xdx)/(√(a^2 −tan^2 x)))dx  k=tanx   dk=sec^2 xdx  ∫(dk/((√(a^2 −k^2 )) ))  sin^(−1) ((k/a))+c_2   sin^(−1) (((tanx)/a))+c_2   (√(a^2 +1)) ×sin^(−1) (((sinx)/(√(a^2 /(a^2 +1)))))−sin^(−1) (((tanx)/a))+c

$$\int\frac{{a}^{\mathrm{2}} −{tan}^{\mathrm{2}} {x}}{\sqrt{{a}^{\mathrm{2}} −{tan}^{\mathrm{2}} {x}}}{dx} \\ $$ $${a}^{\mathrm{2}} \int\frac{{dx}}{\sqrt{{a}^{\mathrm{2}} −{tan}^{\mathrm{2}} {x}}}−\int\frac{{sec}^{\mathrm{2}} {x}−\mathrm{1}}{\sqrt{{a}^{\mathrm{2}} −{tan}^{\mathrm{2}} {x}}}{dx} \\ $$ $$\left({a}^{\mathrm{2}} +\mathrm{1}\right)\int\frac{{dx}}{\sqrt{{a}^{\mathrm{2}} −{tan}^{\mathrm{2}} {x}}}−\int\frac{{sec}^{\mathrm{2}} {x}\:{dx}}{\sqrt{{a}^{\mathrm{2}} −{tan}^{\mathrm{2}} {x}}} \\ $$ $${I}_{\mathrm{1}} −{I}_{\mathrm{2}} \\ $$ $${I}_{\mathrm{1}} =\left({a}^{\mathrm{2}} +\mathrm{1}\right)\int\frac{{cosxdx}}{\sqrt{{a}^{\mathrm{2}} {cos}^{\mathrm{2}} {x}−{sin}^{\mathrm{2}} {x}}} \\ $$ $${t}={sinx}\:\:\:{dt}={cosx}\:{dx} \\ $$ $$\left({a}^{\mathrm{2}} +\mathrm{1}\right)\int\frac{{dt}}{\sqrt{{a}^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)−{t}^{\mathrm{2}} }} \\ $$ $$\left({a}^{\mathrm{2}} +\mathrm{1}\right)\int\frac{{dt}}{\sqrt{{a}^{\mathrm{2}} −{t}^{\mathrm{2}} \left({a}^{\mathrm{2}} +\mathrm{1}\right)}} \\ $$ $$\left({a}^{\mathrm{2}} +\mathrm{1}\right)\int\frac{{dt}}{\sqrt{\left({a}^{\mathrm{2}} +\mathrm{1}\right)\left(\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +\mathrm{1}}\right)−{t}^{\mathrm{2}} }} \\ $$ $$\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:\int\frac{{dt}}{\sqrt{\left(\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +\mathrm{1}}\right)^{} −{t}^{\mathrm{2}} }} \\ $$ $$\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:×{sin}^{−\mathrm{1}} \left(\frac{{t}}{\sqrt{\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +\mathrm{1}}}\:}\right) \\ $$ $$\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:×{sin}^{−\mathrm{1}} \left(\frac{{sinx}}{\sqrt{\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +\mathrm{1}}}\:}\right)+{c}_{\mathrm{1}} \\ $$ $${I}_{\mathrm{2}} =\int\frac{{sec}^{\mathrm{2}} {xdx}}{\sqrt{{a}^{\mathrm{2}} −{tan}^{\mathrm{2}} {x}}}{dx} \\ $$ $${k}={tanx}\:\:\:{dk}={sec}^{\mathrm{2}} {xdx} \\ $$ $$\int\frac{{dk}}{\sqrt{{a}^{\mathrm{2}} −{k}^{\mathrm{2}} }\:} \\ $$ $${sin}^{−\mathrm{1}} \left(\frac{{k}}{{a}}\right)+{c}_{\mathrm{2}} \\ $$ $${sin}^{−\mathrm{1}} \left(\frac{{tanx}}{{a}}\right)+{c}_{\mathrm{2}} \\ $$ $$\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}\:×{sin}^{−\mathrm{1}} \left(\frac{{sinx}}{\sqrt{\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} +\mathrm{1}}}}\right)−{sin}^{−\mathrm{1}} \left(\frac{{tanx}}{{a}}\right)+{c} \\ $$ $$ \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 11/Oct/18

pls check

$${pls}\:{check} \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 11/Oct/18

most welcome sir...

$${most}\:{welcome}\:{sir}... \\ $$

Commented byMrW3 last updated on 11/Oct/18

sir, your answer is correct, it can be  transformed to the same form as mine.  there is one strange thing:  both in the result from me and from  ajfour sir we have a limitation that  is tan x≠a, but in your result there  is no limitation. but from the point of view  of physic there should be this limitation.  can you explain it?

$${sir},\:{your}\:{answer}\:{is}\:{correct},\:{it}\:{can}\:{be} \\ $$ $${transformed}\:{to}\:{the}\:{same}\:{form}\:{as}\:{mine}. \\ $$ $${there}\:{is}\:{one}\:{strange}\:{thing}: \\ $$ $${both}\:{in}\:{the}\:{result}\:{from}\:{me}\:{and}\:{from} \\ $$ $${ajfour}\:{sir}\:{we}\:{have}\:{a}\:{limitation}\:{that} \\ $$ $${is}\:\mathrm{tan}\:{x}\neq{a},\:{but}\:{in}\:{your}\:{result}\:{there} \\ $$ $${is}\:{no}\:{limitation}.\:{but}\:{from}\:{the}\:{point}\:{of}\:{view} \\ $$ $${of}\:{physic}\:{there}\:{should}\:{be}\:{this}\:{limitation}. \\ $$ $${can}\:{you}\:{explain}\:{it}? \\ $$

Commented bytanmay.chaudhury50@gmail.com last updated on 11/Oct/18

sir give me time to go through the problem of   physics both of you sir solved...

$${sir}\:{give}\:{me}\:{time}\:{to}\:{go}\:{through}\:{the}\:{problem}\:{of}\: \\ $$ $${physics}\:{both}\:{of}\:{you}\:{sir}\:{solved}... \\ $$

Commented byMrW3 last updated on 11/Oct/18

thank you sir.  it′s about the question if x can be all  values from 0 to (π/2).

$${thank}\:{you}\:{sir}. \\ $$ $${it}'{s}\:{about}\:{the}\:{question}\:{if}\:{x}\:{can}\:{be}\:{all} \\ $$ $${values}\:{from}\:\mathrm{0}\:{to}\:\frac{\pi}{\mathrm{2}}. \\ $$

Commented byMrW3 last updated on 11/Oct/18

thank you sir!

$${thank}\:{you}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com