Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 4524 by love math last updated on 05/Feb/16

3^(3x) +x^2 −9>0

$$\mathrm{3}^{\mathrm{3}{x}} +{x}^{\mathrm{2}} −\mathrm{9}>\mathrm{0} \\ $$

Commented byYozzii last updated on 05/Feb/16

27^x >9−x^2    (∗)  (∗) is true for 9−x^2 ≤0⇒x^2 ≤9  ⇒∣x∣≥3. 27^x >0 ∀x∈R while 9−x^2 ≤0  for ∣x∣≥3.

$$\mathrm{27}^{{x}} >\mathrm{9}−{x}^{\mathrm{2}} \:\:\:\left(\ast\right) \\ $$ $$\left(\ast\right)\:{is}\:{true}\:{for}\:\mathrm{9}−{x}^{\mathrm{2}} \leqslant\mathrm{0}\Rightarrow{x}^{\mathrm{2}} \leqslant\mathrm{9} \\ $$ $$\Rightarrow\mid{x}\mid\geqslant\mathrm{3}.\:\mathrm{27}^{{x}} >\mathrm{0}\:\forall{x}\in\mathbb{R}\:{while}\:\mathrm{9}−{x}^{\mathrm{2}} \leqslant\mathrm{0} \\ $$ $${for}\:\mid{x}\mid\geqslant\mathrm{3}.\: \\ $$ $$ \\ $$ $$ \\ $$

Answered by Yozzii last updated on 05/Feb/16

Commented byYozzii last updated on 05/Feb/16

This image contains the graphs of the  functions f(x)=27^x  and g(x)=9−x^2 .  f(x)=27^x  is the white graph while  g(x)=9−x^2  is the blue graph. The   inequality is asking about the set of  values of x for which f(x)>g(x).

$${This}\:{image}\:{contains}\:{the}\:{graphs}\:{of}\:{the} \\ $$ $${functions}\:{f}\left({x}\right)=\mathrm{27}^{{x}} \:{and}\:{g}\left({x}\right)=\mathrm{9}−{x}^{\mathrm{2}} . \\ $$ $${f}\left({x}\right)=\mathrm{27}^{{x}} \:{is}\:{the}\:{white}\:{graph}\:{while} \\ $$ $${g}\left({x}\right)=\mathrm{9}−{x}^{\mathrm{2}} \:{is}\:{the}\:{blue}\:{graph}.\:{The}\: \\ $$ $${inequality}\:{is}\:{asking}\:{about}\:{the}\:{set}\:{of} \\ $$ $${values}\:{of}\:{x}\:{for}\:{which}\:{f}\left({x}\right)>{g}\left({x}\right). \\ $$ $$ \\ $$ $$ \\ $$

Answered by Yozzii last updated on 05/Feb/16

Commented byYozzii last updated on 05/Feb/16

This image shows the approximation  of the positive root of the equation  27^x =9−x^2  as being x=0.650. From  x>0.650, 27^x  increases while 9−x^2   decreases. Hence, 27^x >9−x^2  for   x>0.650  (approximately).

$${This}\:{image}\:{shows}\:{the}\:{approximation} \\ $$ $${of}\:{the}\:{positive}\:{root}\:{of}\:{the}\:{equation} \\ $$ $$\mathrm{27}^{{x}} =\mathrm{9}−{x}^{\mathrm{2}} \:{as}\:{being}\:{x}=\mathrm{0}.\mathrm{650}.\:{From} \\ $$ $${x}>\mathrm{0}.\mathrm{650},\:\mathrm{27}^{{x}} \:{increases}\:{while}\:\mathrm{9}−{x}^{\mathrm{2}} \\ $$ $${decreases}.\:{Hence},\:\mathrm{27}^{{x}} >\mathrm{9}−{x}^{\mathrm{2}} \:{for}\: \\ $$ $${x}>\mathrm{0}.\mathrm{650}\:\:\left({approximately}\right). \\ $$ $$ \\ $$

Commented byYozzii last updated on 05/Feb/16

Let h(x)=27^x +x^2 −9.  ⇒h^′ (x)=27^x ln27+2x  By the Newton−Raphson method,  the (n+1)th approximation to the  root of the equation h(x)=0, given  that we have the nth approximation,  is found by the formula  x_(n+1) =x_n −((h(x_n ))/(h^′ (x_n ))).    x_(n+1) =((27^x_n  (x_n ln27−1)+x_n ^2 +9)/(27^x_n  ln27+2x_n ))  Let x_1 =0.650⇒x_2 ≈0.65199  ⇒x_3 ≈0.65199⇒x_4 =x_5 =...=x_n ≈0.65199  if we input successive values to 5 d.p.  ∴ x≈0.652 for the root so x>0.652   for f(x)>g(x).

$${Let}\:{h}\left({x}\right)=\mathrm{27}^{{x}} +{x}^{\mathrm{2}} −\mathrm{9}. \\ $$ $$\Rightarrow{h}^{'} \left({x}\right)=\mathrm{27}^{{x}} {ln}\mathrm{27}+\mathrm{2}{x} \\ $$ $${By}\:{the}\:{Newton}−{Raphson}\:{method}, \\ $$ $${the}\:\left({n}+\mathrm{1}\right){th}\:{approximation}\:{to}\:{the} \\ $$ $${root}\:{of}\:{the}\:{equation}\:{h}\left({x}\right)=\mathrm{0},\:{given} \\ $$ $${that}\:{we}\:{have}\:{the}\:{nth}\:{approximation}, \\ $$ $${is}\:{found}\:{by}\:{the}\:{formula} \\ $$ $${x}_{{n}+\mathrm{1}} ={x}_{{n}} −\frac{{h}\left({x}_{{n}} \right)}{{h}^{'} \left({x}_{{n}} \right)}. \\ $$ $$ \\ $$ $${x}_{{n}+\mathrm{1}} =\frac{\mathrm{27}^{{x}_{{n}} } \left({x}_{{n}} {ln}\mathrm{27}−\mathrm{1}\right)+{x}_{{n}} ^{\mathrm{2}} +\mathrm{9}}{\mathrm{27}^{{x}_{{n}} } {ln}\mathrm{27}+\mathrm{2}{x}_{{n}} } \\ $$ $${Let}\:{x}_{\mathrm{1}} =\mathrm{0}.\mathrm{650}\Rightarrow{x}_{\mathrm{2}} \approx\mathrm{0}.\mathrm{65199} \\ $$ $$\Rightarrow{x}_{\mathrm{3}} \approx\mathrm{0}.\mathrm{65199}\Rightarrow{x}_{\mathrm{4}} ={x}_{\mathrm{5}} =...={x}_{{n}} \approx\mathrm{0}.\mathrm{65199} \\ $$ $${if}\:{we}\:{input}\:{successive}\:{values}\:{to}\:\mathrm{5}\:{d}.{p}. \\ $$ $$\therefore\:{x}\approx\mathrm{0}.\mathrm{652}\:{for}\:{the}\:{root}\:{so}\:{x}>\mathrm{0}.\mathrm{652}\: \\ $$ $${for}\:{f}\left({x}\right)>{g}\left({x}\right). \\ $$

Answered by Yozzii last updated on 05/Feb/16

Commented byYozzii last updated on 06/Feb/16

This image indicates an approximate  value of x for which f(x)>g(x) when  x<0. Descending from x≈−3.00  we have that f(x) remains non−negative  while g(x) falls below zero in value.  Therefore, f(x)>g(x) for x<−3.00  (approximately) as well.   In all, 27^x >9−x^2  for x>0.652 or  x<−3.00 (approximately).

$${This}\:{image}\:{indicates}\:{an}\:{approximate} \\ $$ $${value}\:{of}\:{x}\:{for}\:{which}\:{f}\left({x}\right)>{g}\left({x}\right)\:{when} \\ $$ $${x}<\mathrm{0}.\:{Descending}\:{from}\:{x}\approx−\mathrm{3}.\mathrm{00} \\ $$ $${we}\:{have}\:{that}\:{f}\left({x}\right)\:{remains}\:{non}−{negative} \\ $$ $${while}\:{g}\left({x}\right)\:{falls}\:{below}\:{zero}\:{in}\:{value}. \\ $$ $${Therefore},\:{f}\left({x}\right)>{g}\left({x}\right)\:{for}\:{x}<−\mathrm{3}.\mathrm{00} \\ $$ $$\left({approximately}\right)\:{as}\:{well}.\: \\ $$ $${In}\:{all},\:\mathrm{27}^{{x}} >\mathrm{9}−{x}^{\mathrm{2}} \:{for}\:{x}>\mathrm{0}.\mathrm{652}\:{or} \\ $$ $${x}<−\mathrm{3}.\mathrm{00}\:\left({approximately}\right).\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com