Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 45259 by rahul 19 last updated on 11/Oct/18

Find  distance of point (1,1,1) from  the line passing through (2,3,4) &  (−1,2,3) ?

$${Find}\:\:{distance}\:{of}\:{point}\:\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\:{from} \\ $$ $${the}\:{line}\:{passing}\:{through}\:\left(\mathrm{2},\mathrm{3},\mathrm{4}\right)\:\& \\ $$ $$\left(−\mathrm{1},\mathrm{2},\mathrm{3}\right)\:? \\ $$

Commented byrahul 19 last updated on 11/Oct/18

Another method:  Let P(1,1,1) , Q(2,3,4) , R(−1,2,3)  and M be foot of perpendicular...  Now in ΔPQR,  area of Δ= (1/2)∣PQ×QR∣=(1/2)∣PM×QR∣  ⇒ ∣(i+2j+3k)×(3i+j+k)∣=PM×(√(11))  ⇒ PM= (√((90)/(11)))

$${Another}\:{method}: \\ $$ $${Let}\:{P}\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\:,\:{Q}\left(\mathrm{2},\mathrm{3},\mathrm{4}\right)\:,\:{R}\left(−\mathrm{1},\mathrm{2},\mathrm{3}\right) \\ $$ $${and}\:{M}\:{be}\:{foot}\:{of}\:{perpendicular}... \\ $$ $${Now}\:{in}\:\Delta{PQR}, \\ $$ $${area}\:{of}\:\Delta=\:\frac{\mathrm{1}}{\mathrm{2}}\mid{PQ}×{QR}\mid=\frac{\mathrm{1}}{\mathrm{2}}\mid{PM}×{QR}\mid \\ $$ $$\Rightarrow\:\mid\left({i}+\mathrm{2}{j}+\mathrm{3}{k}\right)×\left(\mathrm{3}{i}+{j}+{k}\right)\mid={PM}×\sqrt{\mathrm{11}} \\ $$ $$\Rightarrow\:{PM}=\:\sqrt{\frac{\mathrm{90}}{\mathrm{11}}} \\ $$

Answered by ajfour last updated on 11/Oct/18

let eq. of line be:   r^� =a^� +λb^�   b^�  = 3i^� +j^� +k^�    ;  ∣b^� ∣=(√(11))    d^� = (1/(√(11))) determinant ((i^� ,j^� ,k^� ),(1,2,3),(3,1,1))      = (1/(√(11)))(−i^� +8j^� −5k^� )   ∣d^� ∣ = (√((90)/(11)))  .

$${let}\:{eq}.\:{of}\:{line}\:{be}:\:\:\:\bar {\boldsymbol{{r}}}=\bar {\boldsymbol{{a}}}+\lambda\bar {\boldsymbol{{b}}} \\ $$ $$\bar {\boldsymbol{{b}}}\:=\:\mathrm{3}\hat {{i}}+\hat {{j}}+\hat {{k}}\:\:\:;\:\:\mid\bar {\boldsymbol{{b}}}\mid=\sqrt{\mathrm{11}} \\ $$ $$\:\:\bar {{d}}=\:\frac{\mathrm{1}}{\sqrt{\mathrm{11}}}\begin{vmatrix}{\hat {{i}}}&{\hat {{j}}}&{\hat {{k}}}\\{\mathrm{1}}&{\mathrm{2}}&{\mathrm{3}}\\{\mathrm{3}}&{\mathrm{1}}&{\mathrm{1}}\end{vmatrix} \\ $$ $$\:\:\:\:=\:\frac{\mathrm{1}}{\sqrt{\mathrm{11}}}\left(−\hat {{i}}+\mathrm{8}\hat {{j}}−\mathrm{5}\hat {{k}}\right) \\ $$ $$\:\mid\bar {{d}}\mid\:=\:\sqrt{\frac{\mathrm{90}}{\mathrm{11}}}\:\:. \\ $$

Commented byrahul 19 last updated on 11/Oct/18

Thank you sir ! ☺️��

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Oct/18

eqnof st line pass ing through (2,3,4) and (−1,2,3)  is ((x−2)/(−1−2))=((y−3)/(2−3))=((z−4)/(3−4))=r  (−3r+2,−r+3,−r+4) point lies on st line and  assumed that it is the foot of perpendicular  drswn from (1,1,1) on the st line.  direction ratio between (1,1,1) and (−3r+2,−r+3,−r+4)  is (−3r+1,−r+2,−r+3)  now (−3r+1)×(−3)+(−r+2)×(−1)+(−r+3)×−1=0  9r−3+r−2+r−3=0  11r=8   r=(8/(11))  now distance bdtween (1,1,1) and(−3r+2,−r+3,−r+4)  (√((−3r+2−1)^2 +(−r+3−1)^2 +(−r+4−1)^2 ))   =(√(((−3r+1)^2 +(−r+2)^2 +(−r+3)^2 ))   =(√((((−24+11)/(11)))^2 +(((−8+22)/(11)))^2 +(((−8+33)/(11)))^2 ))  =(√(((169)/(121))+((196)/(121))+((625)/(121))))  =(√((990)/(121))) =(√((90)/(11)))

$${eqnof}\:{st}\:{line}\:{pass}\:{ing}\:{through}\:\left(\mathrm{2},\mathrm{3},\mathrm{4}\right)\:{and}\:\left(−\mathrm{1},\mathrm{2},\mathrm{3}\right) \\ $$ $${is}\:\frac{{x}−\mathrm{2}}{−\mathrm{1}−\mathrm{2}}=\frac{{y}−\mathrm{3}}{\mathrm{2}−\mathrm{3}}=\frac{{z}−\mathrm{4}}{\mathrm{3}−\mathrm{4}}={r} \\ $$ $$\left(−\mathrm{3}{r}+\mathrm{2},−{r}+\mathrm{3},−{r}+\mathrm{4}\right)\:{point}\:{lies}\:{on}\:{st}\:{line}\:{and} \\ $$ $${assumed}\:{that}\:{it}\:{is}\:{the}\:{foot}\:{of}\:{perpendicular} \\ $$ $${drswn}\:{from}\:\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\:{on}\:{the}\:{st}\:{line}. \\ $$ $${direction}\:{ratio}\:{between}\:\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\:{and}\:\left(−\mathrm{3}{r}+\mathrm{2},−{r}+\mathrm{3},−{r}+\mathrm{4}\right) \\ $$ $${is}\:\left(−\mathrm{3}{r}+\mathrm{1},−{r}+\mathrm{2},−{r}+\mathrm{3}\right) \\ $$ $${now}\:\left(−\mathrm{3}{r}+\mathrm{1}\right)×\left(−\mathrm{3}\right)+\left(−{r}+\mathrm{2}\right)×\left(−\mathrm{1}\right)+\left(−{r}+\mathrm{3}\right)×−\mathrm{1}=\mathrm{0} \\ $$ $$\mathrm{9}{r}−\mathrm{3}+{r}−\mathrm{2}+{r}−\mathrm{3}=\mathrm{0} \\ $$ $$\mathrm{11}{r}=\mathrm{8}\:\:\:{r}=\frac{\mathrm{8}}{\mathrm{11}} \\ $$ $${now}\:{distance}\:{bdtween}\:\left(\mathrm{1},\mathrm{1},\mathrm{1}\right)\:{and}\left(−\mathrm{3}{r}+\mathrm{2},−{r}+\mathrm{3},−{r}+\mathrm{4}\right) \\ $$ $$\sqrt{\left(−\mathrm{3}{r}+\mathrm{2}−\mathrm{1}\right)^{\mathrm{2}} +\left(−{r}+\mathrm{3}−\mathrm{1}\right)^{\mathrm{2}} +\left(−{r}+\mathrm{4}−\mathrm{1}\right)^{\mathrm{2}} }\: \\ $$ $$=\sqrt{\left(\left(−\mathrm{3}{r}+\mathrm{1}\right)^{\mathrm{2}} +\left(−{r}+\mathrm{2}\right)^{\mathrm{2}} +\left(−{r}+\mathrm{3}\right)^{\mathrm{2}} \right.}\: \\ $$ $$=\sqrt{\left(\frac{−\mathrm{24}+\mathrm{11}}{\mathrm{11}}\right)^{\mathrm{2}} +\left(\frac{−\mathrm{8}+\mathrm{22}}{\mathrm{11}}\right)^{\mathrm{2}} +\left(\frac{−\mathrm{8}+\mathrm{33}}{\mathrm{11}}\right)^{\mathrm{2}} } \\ $$ $$=\sqrt{\frac{\mathrm{169}}{\mathrm{121}}+\frac{\mathrm{196}}{\mathrm{121}}+\frac{\mathrm{625}}{\mathrm{121}}} \\ $$ $$=\sqrt{\frac{\mathrm{990}}{\mathrm{121}}}\:=\sqrt{\frac{\mathrm{90}}{\mathrm{11}}} \\ $$ $$ \\ $$

Commented byrahul 19 last updated on 11/Oct/18

thank you sir☺️��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com