Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 45270 by ajfour last updated on 11/Oct/18

Commented by ajfour last updated on 11/Oct/18

Find 𝛂 in terms of R and r.

$${Find}\:\boldsymbol{\alpha}\:{in}\:{terms}\:{of}\:{R}\:{and}\:{r}. \\ $$

Answered by MrW3 last updated on 11/Oct/18

PT=(r/(tan α))=((r cos α)/(sin α))  PA=(R/(sin α))  AT=PA−PT=((R−r cos α)/(sin α))  AC=R+r  AC^2 =AT^2 +TC^2   (R+r)^2 =(((R−r cos α)^2 )/(sin^2  α))+r^2   (R^2 +2Rr)(1−cos^2  α)=R^2 −2Rr cos α+r^2 cos^2  α  R^2 +2Rr−(R^2 +2Rr)cos^2  α=R^2 −2Rr cos α+r^2 cos^2  α  (R+r)^2 cos^2  α−2Rr cos α−2Rr=0  cos α=((2Rr+(√(4R^2 r^2 +8Rr(R+r)^2 )))/(2(R+r)^2 ))  cos α=((Rr+(√(Rr[(R+r)^2 +Rr])))/((R+r)^2 ))  ⇒α=cos^(−1) ((Rr+(√(Rr[(R+r)^2 +Rr])))/((R+r)^2 ))

$${PT}=\frac{{r}}{\mathrm{tan}\:\alpha}=\frac{{r}\:\mathrm{cos}\:\alpha}{\mathrm{sin}\:\alpha} \\ $$$${PA}=\frac{{R}}{\mathrm{sin}\:\alpha} \\ $$$${AT}={PA}−{PT}=\frac{{R}−{r}\:\mathrm{cos}\:\alpha}{\mathrm{sin}\:\alpha} \\ $$$${AC}={R}+{r} \\ $$$${AC}^{\mathrm{2}} ={AT}^{\mathrm{2}} +{TC}^{\mathrm{2}} \\ $$$$\left({R}+{r}\right)^{\mathrm{2}} =\frac{\left({R}−{r}\:\mathrm{cos}\:\alpha\right)^{\mathrm{2}} }{\mathrm{sin}^{\mathrm{2}} \:\alpha}+{r}^{\mathrm{2}} \\ $$$$\left({R}^{\mathrm{2}} +\mathrm{2}{Rr}\right)\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\alpha\right)={R}^{\mathrm{2}} −\mathrm{2}{Rr}\:\mathrm{cos}\:\alpha+{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\alpha \\ $$$${R}^{\mathrm{2}} +\mathrm{2}{Rr}−\left({R}^{\mathrm{2}} +\mathrm{2}{Rr}\right)\mathrm{cos}^{\mathrm{2}} \:\alpha={R}^{\mathrm{2}} −\mathrm{2}{Rr}\:\mathrm{cos}\:\alpha+{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\alpha \\ $$$$\left({R}+{r}\right)^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\alpha−\mathrm{2}{Rr}\:\mathrm{cos}\:\alpha−\mathrm{2}{Rr}=\mathrm{0} \\ $$$$\mathrm{cos}\:\alpha=\frac{\mathrm{2}{Rr}+\sqrt{\mathrm{4}{R}^{\mathrm{2}} {r}^{\mathrm{2}} +\mathrm{8}{Rr}\left({R}+{r}\right)^{\mathrm{2}} }}{\mathrm{2}\left({R}+{r}\right)^{\mathrm{2}} } \\ $$$$\mathrm{cos}\:\alpha=\frac{{Rr}+\sqrt{{Rr}\left[\left({R}+{r}\right)^{\mathrm{2}} +{Rr}\right]}}{\left({R}+{r}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\alpha=\mathrm{cos}^{−\mathrm{1}} \frac{{Rr}+\sqrt{{Rr}\left[\left({R}+{r}\right)^{\mathrm{2}} +{Rr}\right]}}{\left({R}+{r}\right)^{\mathrm{2}} } \\ $$

Commented by ajfour last updated on 11/Oct/18

Thank you Sir !

$${Thank}\:{you}\:{Sir}\:! \\ $$

Answered by ajfour last updated on 11/Oct/18

PM=((Rcos α)/(sin α))=(r/(sin α))+(√((R+r)^2 −R^2 ))  AP = (R/(sin α)) = ((rcos α)/(sin α))+(√((R+r)^2 −r^2 ))  ⇒ ((Rcos α−r)/(R−rcos α)) = ((√(r(2R+r)))/(√(R(2r+R)))) = (a/b) (let)  ⇒ bRcos α−br = aR−arcos α     cos α = ((aR+br)/(ar+bR))    𝛂 = cos^(−1) (((R(√(r(2R+r)))+r(√(R(2r+R))))/(r(√(r(2R+r)))+R(√(R(2r+R)))))) .

$${PM}=\frac{{R}\mathrm{cos}\:\alpha}{\mathrm{sin}\:\alpha}=\frac{{r}}{\mathrm{sin}\:\alpha}+\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −{R}^{\mathrm{2}} } \\ $$$${AP}\:=\:\frac{{R}}{\mathrm{sin}\:\alpha}\:=\:\frac{{r}\mathrm{cos}\:\alpha}{\mathrm{sin}\:\alpha}+\sqrt{\left({R}+{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\frac{{R}\mathrm{cos}\:\alpha−{r}}{{R}−{r}\mathrm{cos}\:\alpha}\:=\:\frac{\sqrt{{r}\left(\mathrm{2}{R}+{r}\right)}}{\sqrt{{R}\left(\mathrm{2}{r}+{R}\right)}}\:=\:\frac{{a}}{{b}}\:\left({let}\right) \\ $$$$\Rightarrow\:{bR}\mathrm{cos}\:\alpha−{br}\:=\:{aR}−{ar}\mathrm{cos}\:\alpha \\ $$$$\:\:\:\mathrm{cos}\:\alpha\:=\:\frac{{aR}+{br}}{{ar}+{bR}} \\ $$$$\:\:\boldsymbol{\alpha}\:=\:\mathrm{cos}^{−\mathrm{1}} \left(\frac{{R}\sqrt{{r}\left(\mathrm{2}{R}+{r}\right)}+{r}\sqrt{{R}\left(\mathrm{2}{r}+{R}\right)}}{{r}\sqrt{{r}\left(\mathrm{2}{R}+{r}\right)}+{R}\sqrt{{R}\left(\mathrm{2}{r}+{R}\right)}}\right)\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com