Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 45313 by ajfour last updated on 11/Oct/18

Commented by ajfour last updated on 11/Oct/18

If all five areas are equal, and  circle has unit radius, find  a,and b of ellipse.

$${If}\:{all}\:{five}\:{areas}\:{are}\:{equal},\:{and} \\ $$$${circle}\:{has}\:{unit}\:{radius},\:{find} \\ $$$$\boldsymbol{{a}},{and}\:\boldsymbol{{b}}\:{of}\:{ellipse}. \\ $$

Answered by MrW3 last updated on 12/Oct/18

area of circle=area of ellipse  R=radius of circle=1  area of each region=((πR^2 )/3)  eqn. of circle (polar system):  r=R  eqn. of ellipse (polar system):  ((r^2 cos^2  θ)/a^2 )+((r^2 sin^2  θ)/b^2 )=1  ⇒r^2 =((a^2 b^2 )/(a^2 sin^2  θ+b^2 cos^2  θ))    right top intersection point is (r_1 ,θ_1 )  r_1 =R  ((a^2 b^2 )/(a^2 sin^2  θ_1 +b^2 cos^2  θ_1 ))=R^2   a^2 sin^2  θ_1 +b^2 cos^2  θ_1 =(((ab)/R))^2   a^2 sin^2  θ_1 +b^2 (1−sin^2  θ_1 )=(((ab)/R))^2   ⇒sin^2  θ_1 =((b^2 (a^2 −R^2 ))/(R^2 (a^2 −b^2 )))  ⇒cos^2  θ_1 =1−((b^2 (a^2 −R^2 ))/(R^2 (a^2 −b^2 )))=((a^2 (R^2 −b^2 ))/(R^2 (a^2 −b^2 )))  ⇒tan θ_1 =(b/a)(√((a^2 −R^2 )/(R^2 −b^2 )))  ⇒θ_1 =tan^(−1) ((b/a)(√((a^2 −R^2 )/(R^2 −b^2 ))))    area of rightmost region is  A_R =2∫_0 ^θ_1  (1/2)(r^2 −R^2 )dθ  =∫_0 ^θ_1  (((a^2 b^2 )/(a^2 sin^2  θ+b^2 cos^2  θ))−R^2 )dθ  =a^2 b^2 ∫_0 ^θ_1  (dθ/((a sin θ)^2 +(b cos θ)^2 ))−R^2 θ_1   =ab tan^(−1) (((a tan θ_1 )/b))−R^2 θ_1   =ab tan^(−1) ((√((a^2 −R^2 )/(R^2 −b^2 ))))−R^2 tan^(−1) ((b/a)(√((a^2 −R^2 )/(R^2 −b^2 ))))=((πR^2 )/3)    let λ=(a/R)⇒a=λR  since πab=πR^2 ⇒ab=R^2 ⇒b=(R^2 /a)=(R/λ)  ⇒tan^(−1) λ−tan^(−1) (1/λ)=(π/3)  ⇒tan^(−1) λ−((π/2)−tan^(−1) λ)=(π/3)  ⇒tan^(−1) λ=((5π)/6)  ⇒λ=tan ((5π)/6)=2+(√3)  ⇒a=(2+(√3))R  ⇒b=(R/(2+(√3)))=(2−(√3))R  ⇒θ_1 =tan^(−1) ((1/λ))=tan^(−1) (2−(√3))=15°

$${area}\:{of}\:{circle}={area}\:{of}\:{ellipse} \\ $$$${R}={radius}\:{of}\:{circle}=\mathrm{1} \\ $$$${area}\:{of}\:{each}\:{region}=\frac{\pi{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$$${eqn}.\:{of}\:{circle}\:\left({polar}\:{system}\right): \\ $$$${r}={R} \\ $$$${eqn}.\:{of}\:{ellipse}\:\left({polar}\:{system}\right): \\ $$$$\frac{{r}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}{{a}^{\mathrm{2}} }+\frac{{r}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow{r}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta} \\ $$$$ \\ $$$${right}\:{top}\:{intersection}\:{point}\:{is}\:\left({r}_{\mathrm{1}} ,\theta_{\mathrm{1}} \right) \\ $$$${r}_{\mathrm{1}} ={R} \\ $$$$\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{1}} +{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta_{\mathrm{1}} }={R}^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{1}} +{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta_{\mathrm{1}} =\left(\frac{{ab}}{{R}}\right)^{\mathrm{2}} \\ $$$${a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{1}} +{b}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{1}} \right)=\left(\frac{{ab}}{{R}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{2}} \:\theta_{\mathrm{1}} =\frac{{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{R}^{\mathrm{2}} \right)}{{R}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow\mathrm{cos}^{\mathrm{2}} \:\theta_{\mathrm{1}} =\mathrm{1}−\frac{{b}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{R}^{\mathrm{2}} \right)}{{R}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}=\frac{{a}^{\mathrm{2}} \left({R}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)}{{R}^{\mathrm{2}} \left({a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right)} \\ $$$$\Rightarrow\mathrm{tan}\:\theta_{\mathrm{1}} =\frac{{b}}{{a}}\sqrt{\frac{{a}^{\mathrm{2}} −{R}^{\mathrm{2}} }{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }} \\ $$$$\Rightarrow\theta_{\mathrm{1}} =\mathrm{tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\sqrt{\frac{{a}^{\mathrm{2}} −{R}^{\mathrm{2}} }{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right) \\ $$$$ \\ $$$${area}\:{of}\:{rightmost}\:{region}\:{is} \\ $$$${A}_{{R}} =\mathrm{2}\int_{\mathrm{0}} ^{\theta_{\mathrm{1}} } \frac{\mathrm{1}}{\mathrm{2}}\left({r}^{\mathrm{2}} −{R}^{\mathrm{2}} \right){d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\theta_{\mathrm{1}} } \left(\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \:\theta+{b}^{\mathrm{2}} \mathrm{cos}^{\mathrm{2}} \:\theta}−{R}^{\mathrm{2}} \right){d}\theta \\ $$$$={a}^{\mathrm{2}} {b}^{\mathrm{2}} \int_{\mathrm{0}} ^{\theta_{\mathrm{1}} } \frac{{d}\theta}{\left({a}\:\mathrm{sin}\:\theta\right)^{\mathrm{2}} +\left({b}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} }−{R}^{\mathrm{2}} \theta_{\mathrm{1}} \\ $$$$={ab}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}\:\mathrm{tan}\:\theta_{\mathrm{1}} }{{b}}\right)−{R}^{\mathrm{2}} \theta_{\mathrm{1}} \\ $$$$={ab}\:\mathrm{tan}^{−\mathrm{1}} \left(\sqrt{\frac{{a}^{\mathrm{2}} −{R}^{\mathrm{2}} }{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right)−{R}^{\mathrm{2}} \mathrm{tan}^{−\mathrm{1}} \left(\frac{{b}}{{a}}\sqrt{\frac{{a}^{\mathrm{2}} −{R}^{\mathrm{2}} }{{R}^{\mathrm{2}} −{b}^{\mathrm{2}} }}\right)=\frac{\pi{R}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$ \\ $$$${let}\:\lambda=\frac{{a}}{{R}}\Rightarrow{a}=\lambda{R} \\ $$$${since}\:\pi{ab}=\pi{R}^{\mathrm{2}} \Rightarrow{ab}={R}^{\mathrm{2}} \Rightarrow{b}=\frac{{R}^{\mathrm{2}} }{{a}}=\frac{{R}}{\lambda} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \lambda−\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\lambda}=\frac{\pi}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \lambda−\left(\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \lambda\right)=\frac{\pi}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{tan}^{−\mathrm{1}} \lambda=\frac{\mathrm{5}\pi}{\mathrm{6}} \\ $$$$\Rightarrow\lambda=\mathrm{tan}\:\frac{\mathrm{5}\pi}{\mathrm{6}}=\mathrm{2}+\sqrt{\mathrm{3}} \\ $$$$\Rightarrow{a}=\left(\mathrm{2}+\sqrt{\mathrm{3}}\right){R} \\ $$$$\Rightarrow{b}=\frac{{R}}{\mathrm{2}+\sqrt{\mathrm{3}}}=\left(\mathrm{2}−\sqrt{\mathrm{3}}\right){R} \\ $$$$\Rightarrow\theta_{\mathrm{1}} =\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\lambda}\right)=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}−\sqrt{\mathrm{3}}\right)=\mathrm{15}° \\ $$

Commented by MrW3 last updated on 12/Oct/18

Commented by ajfour last updated on 12/Oct/18

Great ; thank you very much Sir.

$${Great}\:;\:{thank}\:{you}\:{very}\:{much}\:{Sir}. \\ $$

Commented by behi83417@gmail.com last updated on 12/Oct/18

nice problem and beautiful solution.  thanks a lot sir Ajfour& sir mrW3.

$${nice}\:{problem}\:{and}\:{beautiful}\:{solution}. \\ $$$${thanks}\:{a}\:{lot}\:{sir}\:{Ajfour\&}\:{sir}\:{mrW}\mathrm{3}. \\ $$$$ \\ $$

Commented by ajfour last updated on 12/Oct/18

can we now have a question from  you, behi Sir.

$${can}\:{we}\:{now}\:{have}\:{a}\:{question}\:{from} \\ $$$${you},\:{behi}\:{Sir}. \\ $$

Commented by behi83417@gmail.com last updated on 12/Oct/18

ofcource sir Ajfour.Q#45366 lunched  and waiting for your attention.

$${ofcource}\:{sir}\:{Ajfour}.{Q}#\mathrm{45366}\:{lunched} \\ $$$${and}\:{waiting}\:{for}\:{your}\:{attention}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com