Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 45353 by pieroo last updated on 12/Oct/18

Prove that p(n)=((a_1 +a_2 +...+a_n )/n) ≥^n (√(a_1 a_2 ...a_n ))  ∀ n ∈N

$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{p}\left(\mathrm{n}\right)=\frac{\boldsymbol{\mathrm{a}}_{\mathrm{1}} +\boldsymbol{\mathrm{a}}_{\mathrm{2}} +...+\boldsymbol{\mathrm{a}}_{\mathrm{n}} }{\mathrm{n}}\:\geqslant\:^{\mathrm{n}} \sqrt{\boldsymbol{\mathrm{a}}_{\mathrm{1}} \boldsymbol{\mathrm{a}}_{\mathrm{2}} ...\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} } \\ $$$$\forall\:\mathrm{n}\:\in\boldsymbol{\mathrm{N}} \\ $$

Commented by pieroo last updated on 12/Oct/18

please help

$$\mathrm{please}\:\mathrm{help} \\ $$

Commented by Kunal12588 last updated on 12/Oct/18

trying PMI(Induction)

$${trying}\:{PMI}\left({Induction}\right) \\ $$

Commented by pieroo last updated on 14/Oct/18

I still need help urgently please

$$\mathrm{I}\:\mathrm{still}\:\mathrm{need}\:\mathrm{help}\:\mathrm{urgently}\:\mathrm{please} \\ $$

Answered by Kunal12588 last updated on 12/Oct/18

p(n):((a_1 +a_2 +a_3 +...+a_n )/n)≥((a_1 a_2 a_3 ...a_n ))^(1/n)   p(1):(a_1 /1)=a_1            (a_1 )^(1/1) =a_1   ∴p(1) satisfies p(n)  p(2):((a_1 +a_2 )/2)           ((a_1 a_2 ))^(1/2) =(√a_1 )(√a_2 )  (1/2)((√a_1 )−(√a_2 ))^2 ≥0  ⇒ ((a_1 +a_2 −2(√a_1 )(√a_2 ))/2)≥0  ⇒((a_1 +a_2 )/2)≥(√a_1 )(√a_2 )  ∴p(2) satisfies p(n)  let us assume p(n) is true for n=k  ⇒p(k):((a_1 +a_2 +a_3 +...+a_k )/k)≥((a_1 a_2 a_3 ...a_k ))^(1/k)   now we have to show  p(k+1):((a_1 +a_2 +a_3 +...+a_(k+1) )/(k+1))≥((a_1 a_2 a_3 ...a_(k+1) ))^(1/(k+1))   please help

$${p}\left({n}\right):\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} +...+{a}_{{n}} }{{n}}\geqslant\sqrt[{{n}}]{{a}_{\mathrm{1}} {a}_{\mathrm{2}} {a}_{\mathrm{3}} ...{a}_{{n}} } \\ $$$${p}\left(\mathrm{1}\right):\frac{{a}_{\mathrm{1}} }{\mathrm{1}}={a}_{\mathrm{1}} \:\:\:\:\:\:\:\:\:\:\:\sqrt[{\mathrm{1}}]{{a}_{\mathrm{1}} }={a}_{\mathrm{1}} \\ $$$$\therefore{p}\left(\mathrm{1}\right)\:{satisfies}\:{p}\left({n}\right) \\ $$$${p}\left(\mathrm{2}\right):\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} }{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:\:\sqrt[{\mathrm{2}}]{{a}_{\mathrm{1}} {a}_{\mathrm{2}} }=\sqrt{{a}_{\mathrm{1}} }\sqrt{{a}_{\mathrm{2}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{{a}_{\mathrm{1}} }−\sqrt{{a}_{\mathrm{2}} }\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\Rightarrow\:\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} −\mathrm{2}\sqrt{{a}_{\mathrm{1}} }\sqrt{{a}_{\mathrm{2}} }}{\mathrm{2}}\geqslant\mathrm{0} \\ $$$$\Rightarrow\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} }{\mathrm{2}}\geqslant\sqrt{{a}_{\mathrm{1}} }\sqrt{{a}_{\mathrm{2}} } \\ $$$$\therefore{p}\left(\mathrm{2}\right)\:{satisfies}\:{p}\left({n}\right) \\ $$$${let}\:{us}\:{assume}\:{p}\left({n}\right)\:{is}\:{true}\:{for}\:{n}={k} \\ $$$$\Rightarrow{p}\left({k}\right):\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} +...+{a}_{{k}} }{{k}}\geqslant\sqrt[{{k}}]{{a}_{\mathrm{1}} {a}_{\mathrm{2}} {a}_{\mathrm{3}} ...{a}_{{k}} } \\ $$$${now}\:{we}\:{have}\:{to}\:{show} \\ $$$${p}\left({k}+\mathrm{1}\right):\frac{{a}_{\mathrm{1}} +{a}_{\mathrm{2}} +{a}_{\mathrm{3}} +...+{a}_{{k}+\mathrm{1}} }{{k}+\mathrm{1}}\geqslant\sqrt[{{k}+\mathrm{1}}]{{a}_{\mathrm{1}} {a}_{\mathrm{2}} {a}_{\mathrm{3}} ...{a}_{{k}+\mathrm{1}} } \\ $$$${please}\:{help} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18

i am hereby posting proof given in Higher Algebrs  Bernard and child...

$${i}\:{am}\:{hereby}\:{posting}\:{proof}\:{given}\:{in}\:{Higher}\:{Algebrs} \\ $$$${Bernard}\:{and}\:{child}... \\ $$$$\: \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Oct/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com