Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 4540 by Yozzii last updated on 06/Feb/16

Let us define the positive number n with four  digits a,b,c and d such that n=abcd  with a,b,c,d∈Z, 1≤a≤9, 0≤b≤9,  0≤c≤9 and 0≤d≤9. Let us then say  that a cool number is a four digit number,  say n, such that the two digit numbers written as  ab and cd are given by ab=r×s and  cd=(r−1)×(s+1) for some non−negative integers  r and s, r≠s. For example, 8081 has   a=8,b=0 and 80=10×8= while   c=8,d=1 and 81=9×9=(10−1)(8+1).  So, for n=8081, r=10 while s=8.  How many n, for 1000≤n≤9999, are cool?    For n∈[1000,9999],n∈Z, how many n exist  so that ab=r×s and cd=r×s+1? Call  such n warm numbers.

$${Let}\:{us}\:{define}\:{the}\:{positive}\:{number}\:{n}\:{with}\:{four} \\ $$$${digits}\:\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}}\:{and}\:\boldsymbol{\mathrm{d}}\:{such}\:{that}\:{n}=\boldsymbol{\mathrm{abcd}} \\ $$$${with}\:\boldsymbol{\mathrm{a}},\boldsymbol{\mathrm{b}},\boldsymbol{\mathrm{c}},\boldsymbol{\mathrm{d}}\in\mathbb{Z},\:\mathrm{1}\leqslant\boldsymbol{\mathrm{a}}\leqslant\mathrm{9},\:\mathrm{0}\leqslant\boldsymbol{\mathrm{b}}\leqslant\mathrm{9}, \\ $$$$\mathrm{0}\leqslant\boldsymbol{\mathrm{c}}\leqslant\mathrm{9}\:{and}\:\mathrm{0}\leqslant\boldsymbol{\mathrm{d}}\leqslant\mathrm{9}.\:{Let}\:{us}\:{then}\:{say} \\ $$$${that}\:{a}\:{cool}\:{number}\:{is}\:{a}\:{four}\:{digit}\:{number}, \\ $$$${say}\:{n},\:{such}\:{that}\:{the}\:{two}\:{digit}\:{numbers}\:{written}\:{as} \\ $$$$\boldsymbol{\mathrm{ab}}\:{and}\:\boldsymbol{\mathrm{cd}}\:{are}\:{given}\:{by}\:\boldsymbol{\mathrm{ab}}={r}×{s}\:{and} \\ $$$$\boldsymbol{\mathrm{cd}}=\left({r}−\mathrm{1}\right)×\left({s}+\mathrm{1}\right)\:{for}\:{some}\:{non}−{negative}\:{integers} \\ $$$${r}\:{and}\:{s},\:{r}\neq{s}.\:{For}\:{example},\:\mathrm{8081}\:{has}\: \\ $$$$\boldsymbol{\mathrm{a}}=\mathrm{8},\boldsymbol{\mathrm{b}}=\mathrm{0}\:{and}\:\mathrm{80}=\mathrm{10}×\mathrm{8}=\:{while}\: \\ $$$$\boldsymbol{\mathrm{c}}=\mathrm{8},\boldsymbol{\mathrm{d}}=\mathrm{1}\:{and}\:\mathrm{81}=\mathrm{9}×\mathrm{9}=\left(\mathrm{10}−\mathrm{1}\right)\left(\mathrm{8}+\mathrm{1}\right). \\ $$$${So},\:{for}\:{n}=\mathrm{8081},\:{r}=\mathrm{10}\:{while}\:{s}=\mathrm{8}. \\ $$$${How}\:{many}\:{n},\:{for}\:\mathrm{1000}\leqslant{n}\leqslant\mathrm{9999},\:{are}\:{cool}? \\ $$$$ \\ $$$${For}\:{n}\in\left[\mathrm{1000},\mathrm{9999}\right],{n}\in\mathbb{Z},\:{how}\:{many}\:{n}\:{exist} \\ $$$${so}\:{that}\:\boldsymbol{\mathrm{ab}}={r}×{s}\:{and}\:\boldsymbol{\mathrm{cd}}={r}×{s}+\mathrm{1}?\:{Call} \\ $$$${such}\:{n}\:{warm}\:{numbers}.\:\: \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 06/Feb/16

 For warm number   ab=r×s and cb^(?) =r×s+1?  Or   ab=r×s and cd=r×s+1?  Pl   confirm.  ...............................................................  How many numbers are there,which are  both warm and cool at the same time?  For example             4849   48=8×6  & 49=(8−1)(6+1)            4849    48=8×6  &  49=8×6+1

$$\:{For}\:{warm}\:{number}\:\:\:\boldsymbol{\mathrm{ab}}={r}×{s}\:{and}\:\boldsymbol{\mathrm{c}}\overset{?} {\boldsymbol{\mathrm{b}}}={r}×{s}+\mathrm{1}? \\ $$$${Or}\:\:\:\boldsymbol{\mathrm{ab}}={r}×{s}\:{and}\:\boldsymbol{\mathrm{c}}{d}={r}×{s}+\mathrm{1}?\:\:{Pl}\:\:\:{confirm}. \\ $$$$............................................................... \\ $$$${How}\:{many}\:{numbers}\:{are}\:{there},{which}\:{are} \\ $$$${both}\:{warm}\:{and}\:{cool}\:{at}\:{the}\:{same}\:{time}? \\ $$$${For}\:{example}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{4849}\:\:\:\mathrm{48}=\mathrm{8}×\mathrm{6}\:\:\&\:\mathrm{49}=\left(\mathrm{8}−\mathrm{1}\right)\left(\mathrm{6}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{4849}\:\:\:\:\mathrm{48}=\mathrm{8}×\mathrm{6}\:\:\&\:\:\mathrm{49}=\mathrm{8}×\mathrm{6}+\mathrm{1} \\ $$$$ \\ $$

Commented by Yozzii last updated on 06/Feb/16

Sorry for the typo! It′s cd=r×s+1.

$${Sorry}\:{for}\:{the}\:{typo}!\:{It}'{s}\:\boldsymbol{\mathrm{cd}}=\mathrm{r}×\mathrm{s}+\mathrm{1}. \\ $$

Answered by Rasheed Soomro last updated on 08/Feb/16

Cool Numbers  Let′s attack the problem from r-s side.        We  have to find number of  pairs (r,s)        with following restrictions:  ^(• ) r×s makes first two digits from left (ab)     and  a≥1,         So,        10≤ r×s≤99............................(i)  ^•  (r−1)(s+1) makes last two digits               00≤ (r−1)(s+1) ≤99.................(ii)  ^• r and s are non-negative integers and r≠s     but as r×s≠0 ( from (i) ),so  r≠0 ∧ s≠0 ,     i-e r and s are positve integers.               r,s ∈ Z^+  with r≠s.......................(iii)  From (i)  10≤ r×s≤99⇒ ((10)/r)≤s≤((99)/r)  But as r,s∈Z^+ , So       ⌈((10)/r)⌉≤s≤⌊((99)/r)⌋..............(iv)  From (ii)   00≤ (r−1)(s+1) ≤99⇒0≤s+1≤((99)/(r−1))         ⇒−1≤s≤((99)/(r−1))−1         ⇒ −1≤s≤((100−r)/(r−1))  But since r,s∈Z^+ ,So           −1≤s≤⌊((100−r)/(r−1))⌋.............(v)  From (iv) &(v)         Max[⌈((10)/r)⌉,−1]≤s≤Min[⌊((99)/r)⌋,⌊((100−r)/(r−1))⌋]  Since r>0  ((10)/r)>−1,  Max[⌈((10)/r)⌉,−1]=⌈((10)/r)⌉       ⌈((10)/r)⌉≤s≤Min[⌊((99)/r)⌋,⌊((100−r)/(r−1))⌋]....(vi)       s≠r................... ....from (iii).....(vii)  From (vi) & (vii)  .........................................................................   ⌈((10)/r)⌉≤s≤Min[⌊((99)/r)⌋,⌊((100−r)/(r−1))⌋] ∧ s≠r...(ix)  .........................................................................  Above  condition determines s,if  we fix r  .  For r=4, s is given by   ⌈((10)/4)⌉≤s≤Min[⌊((99)/4)⌋,⌊((100−4)/(4−1))⌋]   ⌈2.5⌉≤s≤Min[⌊24.75⌋,⌊((96)/3)⌋]   3≤s≤Min[24,32]  3≤s≤24  ∧ s≠4  s=3,5,6,7,...24   Total 21 values  ...................................................  r=1; s=10,11,.....99      ∣ r=31;s=1,2  r=2;s=5,6,...,49              ∣ r=32;s=1,2  r=3;s=4,5,...33               ∣ r=33;s=1,2  r=4;s=3,4^(×) ,...24              ∣ r=34;s=1,2  r=5;s=2,3,4,5^(×) ,...19      ∣ r=35;s=1  r=6;s=2,3,4,5,6^(×) ,...16  ∣r=36;s=1  r=7;s=2,3,..7^(×) ,8,...14  ∣r=37;s=1  r=8;s=2,3,...8^(×) ,...12    (38,1),(39,1)...(50,1)∣  r=9;s=2,3,....9^(×) ,10,11  r=10;s=1,2,...9  r=11;s=1,2,...8  r=12;s=1,2,...8  r=13;s=1,2,...7  r=14;s=1,2,...6  r=15;s=1,2,..,6  r=16;s=1,2...5  r=17;s=1,2,...5  Out of space

$${Cool}\:{Numbers} \\ $$$${Let}'{s}\:{attack}\:{the}\:{problem}\:{from}\:{r}-{s}\:{side}. \\ $$$$\:\:\:\:\:\:{We}\:\:{have}\:{to}\:{find}\:{number}\:{of}\:\:{pairs}\:\left({r},{s}\right) \\ $$$$\:\:\:\:\:\:{with}\:{following}\:{restrictions}: \\ $$$$\:^{\bullet\:} {r}×{s}\:{makes}\:{first}\:{two}\:{digits}\:{from}\:{left}\:\left(\boldsymbol{\mathrm{ab}}\right) \\ $$$$\:\:\:{and}\:\:\boldsymbol{\mathrm{a}}\geqslant\mathrm{1},\:\: \\ $$$$\:\:\:\:\:{So},\:\:\:\:\:\:\:\:\mathrm{10}\leqslant\:{r}×{s}\leqslant\mathrm{99}............................\left({i}\right) \\ $$$$\:^{\bullet} \:\left({r}−\mathrm{1}\right)\left({s}+\mathrm{1}\right)\:{makes}\:{last}\:{two}\:{digits} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{00}\leqslant\:\left({r}−\mathrm{1}\right)\left({s}+\mathrm{1}\right)\:\leqslant\mathrm{99}.................\left({ii}\right) \\ $$$$\:^{\bullet} {r}\:{and}\:{s}\:{are}\:{non}-{negative}\:{integers}\:{and}\:{r}\neq{s} \\ $$$$\:\:\:{but}\:{as}\:{r}×{s}\neq\mathrm{0}\:\left(\:{from}\:\left({i}\right)\:\right),{so}\:\:{r}\neq\mathrm{0}\:\wedge\:{s}\neq\mathrm{0}\:, \\ $$$$\:\:\:{i}-{e}\:{r}\:{and}\:{s}\:{are}\:{positve}\:{integers}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:{r},{s}\:\in\:\mathbb{Z}^{+} \:{with}\:{r}\neq{s}.......................\left({iii}\right) \\ $$$${From}\:\left({i}\right) \\ $$$$\mathrm{10}\leqslant\:{r}×{s}\leqslant\mathrm{99}\Rightarrow\:\frac{\mathrm{10}}{{r}}\leqslant{s}\leqslant\frac{\mathrm{99}}{{r}} \\ $$$${But}\:{as}\:{r},{s}\in\mathbb{Z}^{+} ,\:{So} \\ $$$$\:\:\:\:\:\lceil\frac{\mathrm{10}}{{r}}\rceil\leqslant{s}\leqslant\lfloor\frac{\mathrm{99}}{{r}}\rfloor..............\left({iv}\right) \\ $$$${From}\:\left({ii}\right) \\ $$$$\:\mathrm{00}\leqslant\:\left({r}−\mathrm{1}\right)\left({s}+\mathrm{1}\right)\:\leqslant\mathrm{99}\Rightarrow\mathrm{0}\leqslant{s}+\mathrm{1}\leqslant\frac{\mathrm{99}}{{r}−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\Rightarrow−\mathrm{1}\leqslant{s}\leqslant\frac{\mathrm{99}}{{r}−\mathrm{1}}−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\Rightarrow\:−\mathrm{1}\leqslant{s}\leqslant\frac{\mathrm{100}−{r}}{{r}−\mathrm{1}} \\ $$$${But}\:{since}\:{r},{s}\in\mathbb{Z}^{+} ,{So}\: \\ $$$$\:\:\:\:\:\:\:\:−\mathrm{1}\leqslant{s}\leqslant\lfloor\frac{\mathrm{100}−{r}}{{r}−\mathrm{1}}\rfloor.............\left({v}\right) \\ $$$${From}\:\left({iv}\right)\:\&\left({v}\right) \\ $$$$\:\:\:\:\:\:\:{Max}\left[\lceil\frac{\mathrm{10}}{{r}}\rceil,−\mathrm{1}\right]\leqslant{s}\leqslant{Min}\left[\lfloor\frac{\mathrm{99}}{{r}}\rfloor,\lfloor\frac{\mathrm{100}−{r}}{{r}−\mathrm{1}}\rfloor\right] \\ $$$${Since}\:{r}>\mathrm{0}\:\:\frac{\mathrm{10}}{{r}}>−\mathrm{1},\:\:{Max}\left[\lceil\frac{\mathrm{10}}{{r}}\rceil,−\mathrm{1}\right]=\lceil\frac{\mathrm{10}}{{r}}\rceil \\ $$$$\:\:\:\:\:\lceil\frac{\mathrm{10}}{{r}}\rceil\leqslant{s}\leqslant{Min}\left[\lfloor\frac{\mathrm{99}}{{r}}\rfloor,\lfloor\frac{\mathrm{100}−{r}}{{r}−\mathrm{1}}\rfloor\right]....\left({vi}\right) \\ $$$$\:\:\:\:\:{s}\neq{r}...................\:....{from}\:\left({iii}\right).....\left({vii}\right) \\ $$$${From}\:\left({vi}\right)\:\&\:\left({vii}\right) \\ $$$$......................................................................... \\ $$$$\:\lceil\frac{\mathrm{10}}{{r}}\rceil\leqslant{s}\leqslant{Min}\left[\lfloor\frac{\mathrm{99}}{{r}}\rfloor,\lfloor\frac{\mathrm{100}−{r}}{{r}−\mathrm{1}}\rfloor\right]\:\wedge\:{s}\neq{r}...\left({ix}\right) \\ $$$$......................................................................... \\ $$$${Above}\:\:{condition}\:{determines}\:{s},{if}\:\:{we}\:{fix}\:{r}\:\:. \\ $$$${For}\:{r}=\mathrm{4},\:{s}\:{is}\:{given}\:{by} \\ $$$$\:\lceil\frac{\mathrm{10}}{\mathrm{4}}\rceil\leqslant{s}\leqslant{Min}\left[\lfloor\frac{\mathrm{99}}{\mathrm{4}}\rfloor,\lfloor\frac{\mathrm{100}−\mathrm{4}}{\mathrm{4}−\mathrm{1}}\rfloor\right] \\ $$$$\:\lceil\mathrm{2}.\mathrm{5}\rceil\leqslant{s}\leqslant{Min}\left[\lfloor\mathrm{24}.\mathrm{75}\rfloor,\lfloor\frac{\mathrm{96}}{\mathrm{3}}\rfloor\right] \\ $$$$\:\mathrm{3}\leqslant{s}\leqslant{Min}\left[\mathrm{24},\mathrm{32}\right] \\ $$$$\mathrm{3}\leqslant{s}\leqslant\mathrm{24}\:\:\wedge\:{s}\neq\mathrm{4} \\ $$$${s}=\mathrm{3},\mathrm{5},\mathrm{6},\mathrm{7},...\mathrm{24}\:\:\:{Total}\:\mathrm{21}\:{values} \\ $$$$................................................... \\ $$$${r}=\mathrm{1};\:{s}=\mathrm{10},\mathrm{11},.....\mathrm{99}\:\:\:\:\:\:\mid\:{r}=\mathrm{31};{s}=\mathrm{1},\mathrm{2} \\ $$$${r}=\mathrm{2};{s}=\mathrm{5},\mathrm{6},...,\mathrm{49}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:{r}=\mathrm{32};{s}=\mathrm{1},\mathrm{2} \\ $$$${r}=\mathrm{3};{s}=\mathrm{4},\mathrm{5},...\mathrm{33}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:{r}=\mathrm{33};{s}=\mathrm{1},\mathrm{2} \\ $$$${r}=\mathrm{4};{s}=\mathrm{3},\overset{×} {\mathrm{4}},...\mathrm{24}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mid\:{r}=\mathrm{34};{s}=\mathrm{1},\mathrm{2} \\ $$$${r}=\mathrm{5};{s}=\mathrm{2},\mathrm{3},\mathrm{4},\overset{×} {\mathrm{5}},...\mathrm{19}\:\:\:\:\:\:\mid\:{r}=\mathrm{35};{s}=\mathrm{1} \\ $$$${r}=\mathrm{6};{s}=\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\overset{×} {\mathrm{6}},...\mathrm{16}\:\:\mid{r}=\mathrm{36};{s}=\mathrm{1} \\ $$$${r}=\mathrm{7};{s}=\mathrm{2},\mathrm{3},..\overset{×} {\mathrm{7}},\mathrm{8},...\mathrm{14}\:\:\mid{r}=\mathrm{37};{s}=\mathrm{1} \\ $$$${r}=\mathrm{8};{s}=\mathrm{2},\mathrm{3},...\overset{×} {\mathrm{8}},...\mathrm{12}\:\:\:\:\left(\mathrm{38},\mathrm{1}\right),\left(\mathrm{39},\mathrm{1}\right)...\left(\mathrm{50},\mathrm{1}\right)\mid \\ $$$${r}=\mathrm{9};{s}=\mathrm{2},\mathrm{3},....\overset{×} {\mathrm{9}},\mathrm{10},\mathrm{11} \\ $$$${r}=\mathrm{10};{s}=\mathrm{1},\mathrm{2},...\mathrm{9} \\ $$$${r}=\mathrm{11};{s}=\mathrm{1},\mathrm{2},...\mathrm{8} \\ $$$${r}=\mathrm{12};{s}=\mathrm{1},\mathrm{2},...\mathrm{8} \\ $$$${r}=\mathrm{13};{s}=\mathrm{1},\mathrm{2},...\mathrm{7} \\ $$$${r}=\mathrm{14};{s}=\mathrm{1},\mathrm{2},...\mathrm{6} \\ $$$${r}=\mathrm{15};{s}=\mathrm{1},\mathrm{2},..,\mathrm{6} \\ $$$${r}=\mathrm{16};{s}=\mathrm{1},\mathrm{2}...\mathrm{5} \\ $$$${r}=\mathrm{17};{s}=\mathrm{1},\mathrm{2},...\mathrm{5} \\ $$$${Out}\:{of}\:{space} \\ $$

Commented by Yozzii last updated on 07/Feb/16

Isn′t it 10≤rs≤99 and 0≤(r−1)(s+1)≤99?

$${Isn}'{t}\:{it}\:\mathrm{10}\leqslant{rs}\leqslant\mathrm{99}\:{and}\:\mathrm{0}\leqslant\left({r}−\mathrm{1}\right)\left({s}+\mathrm{1}\right)\leqslant\mathrm{99}? \\ $$

Commented by Yozzii last updated on 07/Feb/16

Since ab=r×s and cd=(r−1)(s+1)  ⇒cd=r×s+r−s−1=ab+r−s−1  ⇒cd−ab=r−s−1  10≤ab≤99 and 00≤cd≤99  min(cd−ab)=min(cd)−min(ab)                             =00−10                             =−10  max(cd−ab)=max(cd)−min(ab)                              =99−10                              =89  ⇒00−10≤cd−ab≤99−10  −10≤r−s−1≤89  −9≤r−s≤90  s−9≤r≤90+s  From you we have also ((10)/s)≤r≤((99)/s).  Could we plot these inequalities   to get the common region?

$${Since}\:\boldsymbol{\mathrm{ab}}=\mathrm{r}×\mathrm{s}\:\mathrm{and}\:\boldsymbol{\mathrm{cd}}=\left(\mathrm{r}−\mathrm{1}\right)\left(\mathrm{s}+\mathrm{1}\right) \\ $$$$\Rightarrow\boldsymbol{\mathrm{cd}}=\mathrm{r}×\mathrm{s}+\mathrm{r}−\mathrm{s}−\mathrm{1}=\boldsymbol{\mathrm{ab}}+\mathrm{r}−\mathrm{s}−\mathrm{1} \\ $$$$\Rightarrow\boldsymbol{\mathrm{cd}}−\boldsymbol{\mathrm{ab}}=\mathrm{r}−\mathrm{s}−\mathrm{1} \\ $$$$\mathrm{10}\leqslant\boldsymbol{\mathrm{ab}}\leqslant\mathrm{99}\:{and}\:\mathrm{00}\leqslant\boldsymbol{\mathrm{cd}}\leqslant\mathrm{99} \\ $$$${min}\left(\boldsymbol{\mathrm{cd}}−\boldsymbol{\mathrm{ab}}\right)={min}\left(\boldsymbol{\mathrm{cd}}\right)−{min}\left(\boldsymbol{\mathrm{ab}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{00}−\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=−\mathrm{10} \\ $$$${max}\left(\boldsymbol{\mathrm{cd}}−\boldsymbol{\mathrm{ab}}\right)={max}\left(\boldsymbol{\mathrm{cd}}\right)−{min}\left(\boldsymbol{\mathrm{ab}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{99}−\mathrm{10} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{89} \\ $$$$\Rightarrow\mathrm{00}−\mathrm{10}\leqslant\boldsymbol{\mathrm{cd}}−\boldsymbol{\mathrm{ab}}\leqslant\mathrm{99}−\mathrm{10} \\ $$$$−\mathrm{10}\leqslant\mathrm{r}−\mathrm{s}−\mathrm{1}\leqslant\mathrm{89} \\ $$$$−\mathrm{9}\leqslant\mathrm{r}−\mathrm{s}\leqslant\mathrm{90} \\ $$$$\mathrm{s}−\mathrm{9}\leqslant{r}\leqslant\mathrm{90}+{s} \\ $$$${From}\:{you}\:{we}\:{have}\:{also}\:\frac{\mathrm{10}}{{s}}\leqslant{r}\leqslant\frac{\mathrm{99}}{{s}}. \\ $$$${Could}\:{we}\:{plot}\:{these}\:{inequalities}\: \\ $$$${to}\:{get}\:{the}\:{common}\:{region}? \\ $$

Commented by Yozzii last updated on 07/Feb/16

Commented by Yozzii last updated on 07/Feb/16

Commented by Rasheed Soomro last updated on 07/Feb/16

Thanks to mention mistake, I have corrected it.

$${Thanks}\:{to}\:{mention}\:{mistake},\:{I}\:{have}\:{corrected}\:{it}. \\ $$

Commented by Rasheed Soomro last updated on 07/Feb/16

NICE  APPROACH!

$$\mathcal{NICE}\:\:\mathcal{APPROACH}! \\ $$

Commented by Rasheed Soomro last updated on 07/Feb/16

Pl do it manually also. I mean without  the help of Wolfram Alpha.

$${Pl}\:{do}\:{it}\:{manually}\:{also}.\:{I}\:{mean}\:{without} \\ $$$${the}\:{help}\:{of}\:{Wolfram}\:{Alpha}. \\ $$

Commented by Yozzii last updated on 07/Feb/16

The best thing I know to do  is draw the graphs manually and count  the valid integer pairs...   I lack experience in solving such   inequalities via a shorter method.

$${The}\:{best}\:{thing}\:{I}\:{know}\:{to}\:{do} \\ $$$${is}\:{draw}\:{the}\:{graphs}\:{manually}\:{and}\:{count} \\ $$$${the}\:{valid}\:{integer}\:{pairs}...\: \\ $$$${I}\:{lack}\:{experience}\:{in}\:{solving}\:{such}\: \\ $$$${inequalities}\:{via}\:{a}\:{shorter}\:{method}. \\ $$

Commented by Rasheed Soomro last updated on 08/Feb/16

Thanks for reply.

$${Thanks}\:{for}\:{reply}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com