Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 4543 by FilupSmith last updated on 06/Feb/16

Triangle ABC has midpoints  D, E and F.    By connecting each verticie with the  opposite midpoint, we create a cress−section  called G.    Prove that all three lines cross at   point G regardless of the type of  triangle

$$\mathrm{Triangle}\:{ABC}\:\mathrm{has}\:\mathrm{midpoints} \\ $$$${D},\:{E}\:\mathrm{and}\:{F}. \\ $$$$ \\ $$$$\mathrm{By}\:\mathrm{connecting}\:\mathrm{each}\:\mathrm{verticie}\:\mathrm{with}\:\mathrm{the} \\ $$$$\mathrm{opposite}\:\mathrm{midpoint},\:\mathrm{we}\:\mathrm{create}\:\mathrm{a}\:\mathrm{cress}−\mathrm{section} \\ $$$$\mathrm{called}\:{G}. \\ $$$$ \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{all}\:\mathrm{three}\:\mathrm{lines}\:\mathrm{cross}\:\mathrm{at}\: \\ $$$$\mathrm{point}\:{G}\:\mathrm{regardless}\:\mathrm{of}\:\mathrm{the}\:\mathrm{type}\:\mathrm{of} \\ $$$$\mathrm{triangle} \\ $$

Commented by FilupSmith last updated on 06/Feb/16

Answered by Rasheed Soomro last updated on 06/Feb/16

Let A=(x_1 ,y_1 ) , B=(x_2 ,y_2 ) and C=(x_3 ,y_3 )  are vertices of the triangle.  ∴ Midpoint of AB   M_1 =( ((x_1 +x_2 )/2),((y_1 +y_2 )/2))  ∴ Midpoint of BC   M_2 =( ((x_2 +x_3 )/2),((y_2 +y_3 )/2))  ∴ Midpoint of AC   M_3 =( ((x_1 +x_3 )/2),((y_1 +y_3 )/2))  Now determine points G_1 ,G_2 ,G_3  which divide CM_1   AM_2   and  BM_3  in  2:1  It will appear that           G_1 =G_2 =G_3 =G=(((x_1 +x_2 +x_3 )/3),((y_1 +y_2 +y_3 )/3))  This proves not only that the medians are  concurrent but also that they cut each other  at ratio 2:1

$${Let}\:\mathrm{A}=\left(\mathrm{x}_{\mathrm{1}} ,\mathrm{y}_{\mathrm{1}} \right)\:,\:\mathrm{B}=\left(\mathrm{x}_{\mathrm{2}} ,\mathrm{y}_{\mathrm{2}} \right)\:{and}\:\mathrm{C}=\left(\mathrm{x}_{\mathrm{3}} ,\mathrm{y}_{\mathrm{3}} \right) \\ $$$${are}\:{vertices}\:{of}\:{the}\:{triangle}. \\ $$$$\therefore\:{Midpoint}\:{of}\:\mathrm{AB}\:\:\:\mathrm{M}_{\mathrm{1}} =\left(\:\frac{\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} }{\mathrm{2}},\frac{\mathrm{y}_{\mathrm{1}} +\mathrm{y}_{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\therefore\:{Midpoint}\:{of}\:\mathrm{BC}\:\:\:\mathrm{M}_{\mathrm{2}} =\left(\:\frac{\mathrm{x}_{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} }{\mathrm{2}},\frac{\mathrm{y}_{\mathrm{2}} +\mathrm{y}_{\mathrm{3}} }{\mathrm{2}}\right) \\ $$$$\therefore\:{Midpoint}\:{of}\:\mathrm{AC}\:\:\:\mathrm{M}_{\mathrm{3}} =\left(\:\frac{\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{3}} }{\mathrm{2}},\frac{\mathrm{y}_{\mathrm{1}} +\mathrm{y}_{\mathrm{3}} }{\mathrm{2}}\right) \\ $$$${Now}\:{determine}\:{points}\:\mathrm{G}_{\mathrm{1}} ,\mathrm{G}_{\mathrm{2}} ,\mathrm{G}_{\mathrm{3}} \:{which}\:{divide}\:\mathrm{CM}_{\mathrm{1}} \\ $$$$\mathrm{AM}_{\mathrm{2}} \:\:{and}\:\:\mathrm{BM}_{\mathrm{3}} \:{in}\:\:\mathrm{2}:\mathrm{1} \\ $$$${It}\:{will}\:{appear}\:{that} \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{G}_{\mathrm{1}} =\mathrm{G}_{\mathrm{2}} =\mathrm{G}_{\mathrm{3}} =\boldsymbol{\mathrm{G}}=\left(\frac{\mathrm{x}_{\mathrm{1}} +\mathrm{x}_{\mathrm{2}} +\mathrm{x}_{\mathrm{3}} }{\mathrm{3}},\frac{\mathrm{y}_{\mathrm{1}} +\mathrm{y}_{\mathrm{2}} +\mathrm{y}_{\mathrm{3}} }{\mathrm{3}}\right) \\ $$$${This}\:{proves}\:{not}\:{only}\:{that}\:{the}\:{medians}\:{are} \\ $$$${concurrent}\:{but}\:{also}\:{that}\:{they}\:{cut}\:{each}\:{other} \\ $$$${at}\:{ratio}\:\mathrm{2}:\mathrm{1} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com