Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 45448 by MrW3 last updated on 13/Oct/18

Commented by MrW3 last updated on 13/Oct/18

When an ellipse is rotated by an  angle α, the five partial areas are equal.  Find the equation of the ellipse  for α=90° and 45° respectively.

$${When}\:{an}\:{ellipse}\:{is}\:{rotated}\:{by}\:{an} \\ $$$${angle}\:\alpha,\:{the}\:{five}\:{partial}\:{areas}\:{are}\:{equal}. \\ $$$${Find}\:{the}\:{equation}\:{of}\:{the}\:{ellipse} \\ $$$${for}\:\alpha=\mathrm{90}°\:{and}\:\mathrm{45}°\:{respectively}. \\ $$

Commented by ajfour last updated on 13/Oct/18

Commented by ajfour last updated on 13/Oct/18

eq. of blue ellipse:   with β=(α/2)       ((r^2 cos^2 (θ−β))/a^2 )+((r^2 sin^2 (θ−β))/b^2 )=1  ⇒ r^2 =((a^2 b^2 )/(b^2 cos^2 (θ−β)+a^2 sin^2 (θ−β)))    for the red one       ((r^2 cos^2 (θ+β))/a^2 )+((r^2 sin^2 (θ+β))/b^2 )=1  Area of blue ellipse in I^(st)  quadrant  A_b = ((5πab)/(12))  Area of red ellipse in I^(st) quadrant    A_r = ((πab)/(12))   A_b =∫_0 ^(  π/2) ((r^2 /2)dθ) =((5πab)/(12))  ⇒  ((ab)/2)tan^(−1) [((atan (θ−β))/b)]∣_0 ^(π/2) =((5πab)/(12))  ⇒ tan^(−1) ((a/(btan β)))+tan^(−1) (((atan β)/b))= ((5π)/6)    ⇔  φ+ψ = ((5π)/6)  , and let m=tan β        tan (φ+ψ)= −(1/(√3))  ⇒   (a/b)((1/m)+m)=−(1/(√3))(1−(a^2 /b^2 ))  ⇒ ((a/b))^2 − (√3)((1/(sin βcos β)))((a/b))−1=0  ⇒    (a/b) = ((√3)/(sin α))+(√((3/(sin^2 α))+1))   .

$${eq}.\:{of}\:{blue}\:{ellipse}:\:\:\:{with}\:\beta=\frac{\alpha}{\mathrm{2}} \\ $$$$\:\:\:\:\:\frac{{r}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \left(\theta−\beta\right)}{{a}^{\mathrm{2}} }+\frac{{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\theta−\beta\right)}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow\:{r}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \left(\theta−\beta\right)+{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\theta−\beta\right)} \\ $$$$ \\ $$$${for}\:{the}\:{red}\:{one} \\ $$$$\:\:\:\:\:\frac{{r}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \left(\theta+\beta\right)}{{a}^{\mathrm{2}} }+\frac{{r}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\theta+\beta\right)}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${Area}\:{of}\:{blue}\:{ellipse}\:{in}\:{I}^{{st}} \:{quadrant} \\ $$$${A}_{{b}} =\:\frac{\mathrm{5}\pi{ab}}{\mathrm{12}} \\ $$$${Area}\:{of}\:{red}\:{ellipse}\:{in}\:{I}^{{st}} {quadrant} \\ $$$$\:\:{A}_{{r}} =\:\frac{\pi{ab}}{\mathrm{12}} \\ $$$$\:{A}_{{b}} =\int_{\mathrm{0}} ^{\:\:\pi/\mathrm{2}} \left(\frac{{r}^{\mathrm{2}} }{\mathrm{2}}{d}\theta\right)\:=\frac{\mathrm{5}\pi{ab}}{\mathrm{12}} \\ $$$$\Rightarrow\:\:\frac{{ab}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} \left[\frac{{a}\mathrm{tan}\:\left(\theta−\beta\right)}{{b}}\right]\mid_{\mathrm{0}} ^{\pi/\mathrm{2}} =\frac{\mathrm{5}\pi{ab}}{\mathrm{12}} \\ $$$$\Rightarrow\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}}{{b}\mathrm{tan}\:\beta}\right)+\mathrm{tan}^{−\mathrm{1}} \left(\frac{{a}\mathrm{tan}\:\beta}{{b}}\right)=\:\frac{\mathrm{5}\pi}{\mathrm{6}} \\ $$$$\:\:\Leftrightarrow\:\:\phi+\psi\:=\:\frac{\mathrm{5}\pi}{\mathrm{6}}\:\:,\:{and}\:{let}\:{m}=\mathrm{tan}\:\beta \\ $$$$\:\:\:\:\:\:\mathrm{tan}\:\left(\phi+\psi\right)=\:−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow\:\:\:\frac{{a}}{{b}}\left(\frac{\mathrm{1}}{{m}}+{m}\right)=−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\left(\mathrm{1}−\frac{{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow\:\left(\frac{{a}}{{b}}\right)^{\mathrm{2}} −\:\sqrt{\mathrm{3}}\left(\frac{\mathrm{1}}{\mathrm{sin}\:\beta\mathrm{cos}\:\beta}\right)\left(\frac{{a}}{{b}}\right)−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\frac{{a}}{{b}}\:=\:\frac{\sqrt{\mathrm{3}}}{\mathrm{sin}\:\alpha}+\sqrt{\frac{\mathrm{3}}{\mathrm{sin}\:^{\mathrm{2}} \alpha}+\mathrm{1}}\:\:\:. \\ $$

Commented by ajfour last updated on 13/Oct/18

thanks for confirming it, Sir.

$${thanks}\:{for}\:{confirming}\:{it},\:{Sir}. \\ $$

Commented by MrW3 last updated on 13/Oct/18

nice and correct sir!

$${nice}\:{and}\:{correct}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com