Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45498 by Sanjarbek last updated on 13/Oct/18

Commented by Meritguide1234 last updated on 13/Oct/18

not solvable

notsolvable

Commented by MJS last updated on 13/Oct/18

possible but not elementary. I′ll post it later

possiblebutnotelementary.Illpostitlater

Commented by maxmathsup by imad last updated on 13/Oct/18

let f(t)=∫ ln(sin(tx))dx ⇒f^′ (t)= ∫ ((x cos(tx))/(sin(tx)))dx    =_(tx =u)     ∫  (u/t) ((cos(u))/(sin(u))) (du/t) =(1/t^2 ) ∫   u((cos(u))/(sin(u))) du   also changement tan((u/2))=α  give f(t)=(1/t^2 ) ∫  2 arctan(α)(((1−α^2 )/(1+α^2 ))/((2α)/(1+α^2 ))) ((2dα)/(1+α^2 ))  =(4/t^2 ) ∫    ((arctan(α))/(1+α^2 )) dα let then introduce the parametric function  ϕ(u) =∫  ((arctan(uα))/(1+α^2 ))dα ⇒ϕ^′ (u) =∫   (α/((1+α^2 )(1+u^2 α^2 )))dα let decompose  F(α)=((aα +b)/(1+α^2 )) +((cα +d)/(1+u^2 α^2 )) ....be continued...

letf(t)=ln(sin(tx))dxf(t)=xcos(tx)sin(tx)dx=tx=uutcos(u)sin(u)dut=1t2ucos(u)sin(u)dualsochangementtan(u2)=αgivef(t)=1t22arctan(α)1α21+α22α1+α22dα1+α2=4t2arctan(α)1+α2dαletthenintroducetheparametricfunctionφ(u)=arctan(uα)1+α2dαφ(u)=α(1+α2)(1+u2α2)dαletdecomposeF(α)=aα+b1+α2+cα+d1+u2α2....becontinued...

Answered by MJS last updated on 14/Oct/18

∫ln sin x dx=∫ln (−(i/2)(e^(ix) −e^(−ix) )) dx=       [t=ix → dx=−idt  =−i∫ln (−(i/2)(e^t −e^(−t) )) dt=  =−i∫ln (−(i/2)) dt−i∫ln (e^t −e^(−t) ) dt  the first one is easy:  −i∫ln (−(i/2)) dt=−i ln (−(i/2)) ∫dt=−i ln (−(i/2)) t=  =ln (−(i/2)) x  the second one:  −i∫ln (e^t −e^(−t) ) dt=        [((∫f′g=fg−∫fg′)),((f′=1 → f=t)),((g=ln (e^t −e^(−t) ) → g′=((e^t +e^(−t) )/(e^t −e^(−t) )))) ]  =−itln (e^t −e^(−t) ) +i∫t((e^t +e^(−t) )/(e^t −e^(−t) ))dt  the first term:  −itln (e^t −e^(−t) )=xln (e^(ix) −e^(−ix) )  the second term:  i∫t((e^t +e^(−t) )/(e^t −e^(−t) ))dt=i∫t((e^(2t) +1)/(e^(2t) −1))dt=       [u=e^(2t) −1 → dt=(e^(−2t) /2)du]  =(i/4)∫(((u+2)ln (u+1))/(u(u+1)))du=  =(i/2)∫((ln (u+1))/u)du+(i/4)∫((ln (u+1))/(u+1))du  the first one:  (i/2)∫((ln (u+1))/u)du=       [v=−u → du=−dv]  =(i/2)∫((ln (1−v))/v)dv=−(i/2)∫−((ln (1−v))/v)dv=       this is a special integral (dilogarithm)  =−(i/2)Li_2  v=−(i/2)Li_2  (−u)=−(i/2)Li_2  (1−e^(2t) )=  =−(i/2)Li_2  (1−e^(2ix) )  the second one:  (i/4)∫((ln (u+1))/(u+1))du=       [w=ln (u+1) → du=(u+1)dw]  =(i/4)∫wdw=(i/8)w^2 =(i/8)ln^2  (u+1)=(i/8)ln^2  (e^(2t) )=  =(i/2)t^2 =−(i/2)x^2   so we have  ∫ln sin x dx=  =xln (−(i/2)) +xln (e^(ix) −e^(−ix) ) −(i/2)Li_2  (1−e^(2ix) ) −(i/2)x^2 +C  please check...

lnsinxdx=ln(i2(eixeix))dx=[t=ixdx=idt=iln(i2(etet))dt==iln(i2)dtiln(etet)dtthefirstoneiseasy:iln(i2)dt=iln(i2)dt=iln(i2)t==ln(i2)xthesecondone:iln(etet)dt=[fg=fgfgf=1f=tg=ln(etet)g=et+etetet]=itln(etet)+itet+etetetdtthefirstterm:itln(etet)=xln(eixeix)thesecondterm:itet+etetetdt=ite2t+1e2t1dt=[u=e2t1dt=e2t2du]=i4(u+2)ln(u+1)u(u+1)du==i2ln(u+1)udu+i4ln(u+1)u+1duthefirstone:i2ln(u+1)udu=[v=udu=dv]=i2ln(1v)vdv=i2ln(1v)vdv=thisisaspecialintegral(dilogarithm)=i2Li2v=i2Li2(u)=i2Li2(1e2t)==i2Li2(1e2ix)thesecondone:i4ln(u+1)u+1du=[w=ln(u+1)du=(u+1)dw]=i4wdw=i8w2=i8ln2(u+1)=i8ln2(e2t)==i2t2=i2x2sowehavelnsinxdx==xln(i2)+xln(eixeix)i2Li2(1e2ix)i2x2+Cpleasecheck...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com