Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 45518 by maxmathsup by imad last updated on 14/Oct/18

calculate Σ_(n=1) ^∞  ((cos(nθ))/n^2 )  and Σ_(n=1) ^∞   ((sin(nθ))/n^2 )

$${calculate}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({n}\theta\right)}{{n}^{\mathrm{2}} }\:\:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\theta\right)}{{n}^{\mathrm{2}} } \\ $$

Commented by maxmathsup by imad last updated on 23/Oct/18

we have proved that Σ_(n=1) ^∞  ((cos(nx))/n) =ln(sin((x/2))) ⇒  ∫_0 ^x (Σ_(n=1) ^∞  ((cos(nt))/n))dt =∫_0 ^x ln(sin((t/2)))dt ⇒  Σ_(n=1) ^∞  (1/n)[(1/n)sin(nt)]_0 ^x = ∫_0 ^x ln(sin((t/2)))dt⇒  Σ_(n=1) ^∞  ((sin(nx))/n^2 ) = ∫_0 ^x ln(sin((t/2)))dt=_((t/2)=u )    2 ∫_0 ^(x/2) ln(sin(u))du also we have  Σ_(n=1) ^∞  ((sin(nx))/n) =((π−x)/2) ⇒ ∫_0 ^x (Σ_(n=1) ^∞  ((sin(nt))/n))dt =∫_0 ^x  ((π−t)/2)dt ⇒  Σ_(n=1) ^∞  (1/n) ∫_0 ^x  sin(nt)dt =((πx)/2) −(1/2) (x^2 /2) ⇒  Σ_(n=1) ^∞  (1/n)[−(1/n)cos(nt)]_0 ^x  =((πx)/2) −(x^2 /4) ⇒  Σ_(n=1) ^∞  (1/n^2 ){1−cos(nx)} =((πx)/2) −(x^2 /4) ⇒  Σ_(n=1) ^∞ ((cos(nx))/n^2 ) =(π^2 /6) −((πx)/2) +(x^2 /4) .

$${we}\:{have}\:{proved}\:{that}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({nx}\right)}{{n}}\:={ln}\left({sin}\left(\frac{{x}}{\mathrm{2}}\right)\right)\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{{x}} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{cos}\left({nt}\right)}{{n}}\right){dt}\:=\int_{\mathrm{0}} ^{{x}} {ln}\left({sin}\left(\frac{{t}}{\mathrm{2}}\right)\right){dt}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\left[\frac{\mathrm{1}}{{n}}{sin}\left({nt}\right)\right]_{\mathrm{0}} ^{{x}} =\:\int_{\mathrm{0}} ^{{x}} {ln}\left({sin}\left(\frac{{t}}{\mathrm{2}}\right)\right){dt}\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{2}} }\:=\:\int_{\mathrm{0}} ^{{x}} {ln}\left({sin}\left(\frac{{t}}{\mathrm{2}}\right)\right){dt}=_{\frac{{t}}{\mathrm{2}}={u}\:} \:\:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{{x}}{\mathrm{2}}} {ln}\left({sin}\left({u}\right)\right){du}\:{also}\:{we}\:{have} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{sin}\left({nx}\right)}{{n}}\:=\frac{\pi−{x}}{\mathrm{2}}\:\Rightarrow\:\int_{\mathrm{0}} ^{{x}} \left(\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{sin}\left({nt}\right)}{{n}}\right){dt}\:=\int_{\mathrm{0}} ^{{x}} \:\frac{\pi−{t}}{\mathrm{2}}{dt}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\:\int_{\mathrm{0}} ^{{x}} \:{sin}\left({nt}\right){dt}\:=\frac{\pi{x}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{2}}\:\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}}\left[−\frac{\mathrm{1}}{{n}}{cos}\left({nt}\right)\right]_{\mathrm{0}} ^{{x}} \:=\frac{\pi{x}}{\mathrm{2}}\:−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\left\{\mathrm{1}−{cos}\left({nx}\right)\right\}\:=\frac{\pi{x}}{\mathrm{2}}\:−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \frac{{cos}\left({nx}\right)}{{n}^{\mathrm{2}} }\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\frac{\pi{x}}{\mathrm{2}}\:+\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18

P_n +iQ_n =((cosnθ)/n^2 )+i((sinnθ)/n^2 )=(e^(inθ) /n^2 )  T_n =P+iQ_n =(e^(inθ) /n^2 )  S_n =Σ_(n=1) ^∞ T_n   S_n =(e^(iθ) /1^2 )+(e^(i2θ) /2^2 )+(e^(i3θ) /3^2 )+...∞  S_n =(x/1^2 )+(x^2 /2^2 )+(x^3 /3^2 )+...∞  wait plz...

$${P}_{{n}} +{iQ}_{{n}} =\frac{{cosn}\theta}{{n}^{\mathrm{2}} }+{i}\frac{{sinn}\theta}{{n}^{\mathrm{2}} }=\frac{{e}^{{in}\theta} }{{n}^{\mathrm{2}} } \\ $$$${T}_{{n}} ={P}+{iQ}_{{n}} =\frac{{e}^{{in}\theta} }{{n}^{\mathrm{2}} } \\ $$$${S}_{{n}} =\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{T}_{{n}} \\ $$$${S}_{{n}} =\frac{{e}^{{i}\theta} }{\mathrm{1}^{\mathrm{2}} }+\frac{{e}^{{i}\mathrm{2}\theta} }{\mathrm{2}^{\mathrm{2}} }+\frac{{e}^{{i}\mathrm{3}\theta} }{\mathrm{3}^{\mathrm{2}} }+...\infty \\ $$$${S}_{{n}} =\frac{{x}}{\mathrm{1}^{\mathrm{2}} }+\frac{{x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\frac{{x}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{2}} }+...\infty \\ $$$${wait}\:{plz}... \\ $$

Answered by Meritguide1234 last updated on 15/Oct/18

Commented by maxmathsup by imad last updated on 21/Oct/18

your answer is not correct sir because ∣((sinθ)/n^2 )∣≤(1/n^2 ) and Σ (1/n^2 ) converges...

$${your}\:{answer}\:{is}\:{not}\:{correct}\:{sir}\:{because}\:\mid\frac{{sin}\theta}{{n}^{\mathrm{2}} }\mid\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:{and}\:\Sigma\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:{converges}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com