All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 45519 by maxmathsup by imad last updated on 14/Oct/18
find∫2+tan2θdθ
Commented by Meritguide1234 last updated on 14/Oct/18
Commented by maxmathsup by imad last updated on 14/Oct/18
letA=∫2+tan2θdθchangementtanθ=2sh(t)giveθ=arctan(2sh(t))⇒dθ=2ch(t)1+2sh2tdt⇒A=∫2+2sh2t2ch(t)1+2sh2tdt=2∫ch2t1+2sh2tdt=2∫1+ch(2t)21+2ch(2t)−12dt=2∫1+ch(2t)1+ch(2t)−1dt=2∫(1ch(2t)+1)dt=2t+2∫dte2t+e−2t2=2t+4∫dte2t+e−2tbut∫dte2t+e−2t=e2t=u∫1u+u−1du2u=12∫duu2+1=12arctan(u)12arctan(e2t)butsh(t)=tanθ2⇒t=argsh(tanθ2)=ln(tanθ2+1+tan2θ2)2t=2ln(tanθ+2+tan2θ2)⇒e2t=(tanθ+2+tan2θ2)2⇒A=2ln(tanθ+2+tan2θ2)+2arctan{(tanθ+2+tan2θ2)2}+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com