Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 45565 by ajfour last updated on 14/Oct/18

If  ax^2 +by^2 +2hxy+2gx+2fy+c=0  be the equation of an ellipse, find  coordinates of center of ellipse.  Q.45506  (another solution)

$${If}\:\:\boldsymbol{{ax}}^{\mathrm{2}} +\boldsymbol{{by}}^{\mathrm{2}} +\mathrm{2}\boldsymbol{{hxy}}+\mathrm{2}\boldsymbol{{gx}}+\mathrm{2}\boldsymbol{{fy}}+\boldsymbol{{c}}=\mathrm{0} \\ $$$${be}\:{the}\:{equation}\:{of}\:{an}\:{ellipse},\:{find} \\ $$$${coordinates}\:{of}\:{center}\:{of}\:{ellipse}. \\ $$$${Q}.\mathrm{45506}\:\:\left({another}\:{solution}\right) \\ $$

Answered by ajfour last updated on 14/Oct/18

let centre of ellipse be (p,q).  Its equation in standard   orientation be  (((u−p)^2 )/A^2 )+(((v−q)^2 )/B^2 )=1  when rotated by angle φ,  let  (u,v) → (x,y)     u−p = (x−p)cos φ+(y−q)sin φ     v−q = (y−q)cos φ−(x−p)sin φ  Then  (([(x−p)cos φ+(y−q)sin φ]^2 )/A^2 )        +(([(y−q)cos φ−(x−p)sin φ]^2 )/B^2 ) −1    = λ(ax^2 +by^2 +2hxy+2gx+2fy+c)    (for all values of x and y; whether  the expressions on l.h.s. and r.h.s.  be equal to zero or not)  let   y=q_(−)    ,  then  (x−p)^2 (((cos^2 φ)/A^2 )+((sin^2 φ)/B^2 ))     = λ(ax^2 +bq^2 +2hqx+2gx+2fq+c)    ((coeff. of x)/(coeff. of x^2 )) = ((−2p)/1) = ((2(hq+g))/a)  ⇒      ap+hq = −g   ....(i)  similarly  if x=p_(−)  , then   (y−q)^2 (((sin^2 φ)/A^2 )+((cos^2 φ)/B^2 ))      = λ(ap^2 +by^2 +2hpy+2gp+2fy+c)    ((coeff. of y)/(coeff. of y^2 )) = ((−2q)/1) = ((2(hp+f))/b)  ⇒         hp+bq = −f     ....(ii)  Now solving (i) & (ii) for p,q    { ((ap+hq = −g  )),((hp+bq = −f  )) :}         p = ((fh−bg)/(ab−h^2 ))  ;   q = ((gh−af)/(ab−h^2 ))  .

$${let}\:{centre}\:{of}\:{ellipse}\:{be}\:\left(\boldsymbol{{p}},\boldsymbol{{q}}\right). \\ $$$${Its}\:{equation}\:{in}\:{standard}\: \\ $$$${orientation}\:{be}\:\:\frac{\left({u}−{p}\right)^{\mathrm{2}} }{{A}^{\mathrm{2}} }+\frac{\left({v}−{q}\right)^{\mathrm{2}} }{{B}^{\mathrm{2}} }=\mathrm{1} \\ $$$${when}\:{rotated}\:{by}\:{angle}\:\phi, \\ $$$${let}\:\:\left({u},{v}\right)\:\rightarrow\:\left({x},{y}\right) \\ $$$$\:\:\:{u}−{p}\:=\:\left({x}−{p}\right)\mathrm{cos}\:\phi+\left({y}−{q}\right)\mathrm{sin}\:\phi \\ $$$$\:\:\:{v}−{q}\:=\:\left({y}−{q}\right)\mathrm{cos}\:\phi−\left({x}−{p}\right)\mathrm{sin}\:\phi \\ $$$${Then} \\ $$$$\frac{\left[\left({x}−{p}\right)\mathrm{cos}\:\phi+\left({y}−{q}\right)\mathrm{sin}\:\phi\right]^{\mathrm{2}} }{{A}^{\mathrm{2}} }\: \\ $$$$\:\:\:\:\:+\frac{\left[\left({y}−{q}\right)\mathrm{cos}\:\phi−\left({x}−{p}\right)\mathrm{sin}\:\phi\right]^{\mathrm{2}} }{{B}^{\mathrm{2}} }\:−\mathrm{1} \\ $$$$\:\:=\:\lambda\left({ax}^{\mathrm{2}} +{by}^{\mathrm{2}} +\mathrm{2}{hxy}+\mathrm{2}{gx}+\mathrm{2}{fy}+{c}\right) \\ $$$$ \\ $$$$\left({for}\:{all}\:{values}\:{of}\:{x}\:{and}\:{y};\:{whether}\right. \\ $$$${the}\:{expressions}\:{on}\:{l}.{h}.{s}.\:{and}\:{r}.{h}.{s}. \\ $$$$\left.{be}\:{equal}\:{to}\:{zero}\:{or}\:{not}\right) \\ $$$${let}\:\:\:\underset{−} {\boldsymbol{{y}}=\boldsymbol{{q}}}\:\:\:,\:\:{then} \\ $$$$\left({x}−{p}\right)^{\mathrm{2}} \left(\frac{\mathrm{cos}\:^{\mathrm{2}} \phi}{{A}^{\mathrm{2}} }+\frac{\mathrm{sin}\:^{\mathrm{2}} \phi}{{B}^{\mathrm{2}} }\right) \\ $$$$\:\:\:=\:\lambda\left({ax}^{\mathrm{2}} +{bq}^{\mathrm{2}} +\mathrm{2}{hqx}+\mathrm{2}{gx}+\mathrm{2}{fq}+{c}\right) \\ $$$$ \\ $$$$\frac{{coeff}.\:{of}\:{x}}{{coeff}.\:{of}\:{x}^{\mathrm{2}} }\:=\:\frac{−\mathrm{2}{p}}{\mathrm{1}}\:=\:\frac{\mathrm{2}\left({hq}+{g}\right)}{{a}} \\ $$$$\Rightarrow\:\:\:\:\:\:\boldsymbol{{ap}}+\boldsymbol{{hq}}\:=\:−\boldsymbol{{g}}\:\:\:....\left(\boldsymbol{{i}}\right) \\ $$$${similarly}\:\:{if}\:\underset{−} {\boldsymbol{{x}}=\boldsymbol{{p}}}\:,\:{then} \\ $$$$\:\left({y}−{q}\right)^{\mathrm{2}} \left(\frac{\mathrm{sin}\:^{\mathrm{2}} \phi}{{A}^{\mathrm{2}} }+\frac{\mathrm{cos}\:^{\mathrm{2}} \phi}{{B}^{\mathrm{2}} }\right) \\ $$$$\:\:\:\:=\:\lambda\left({ap}^{\mathrm{2}} +{by}^{\mathrm{2}} +\mathrm{2}{hpy}+\mathrm{2}{gp}+\mathrm{2}{fy}+{c}\right) \\ $$$$ \\ $$$$\frac{{coeff}.\:{of}\:{y}}{{coeff}.\:{of}\:{y}^{\mathrm{2}} }\:=\:\frac{−\mathrm{2}{q}}{\mathrm{1}}\:=\:\frac{\mathrm{2}\left({hp}+{f}\right)}{{b}} \\ $$$$\Rightarrow\:\:\:\:\:\:\:\:\:\boldsymbol{{hp}}+\boldsymbol{{bq}}\:=\:−\boldsymbol{{f}}\:\:\:\:\:....\left(\boldsymbol{{ii}}\right) \\ $$$${Now}\:{solving}\:\left({i}\right)\:\&\:\left({ii}\right)\:{for}\:\boldsymbol{{p}},\boldsymbol{{q}} \\ $$$$\:\begin{cases}{\boldsymbol{{ap}}+\boldsymbol{{hq}}\:=\:−\boldsymbol{{g}}\:\:}\\{\boldsymbol{{hp}}+\boldsymbol{{bq}}\:=\:−\boldsymbol{{f}}\:\:}\end{cases} \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{p}}\:=\:\frac{\boldsymbol{{fh}}−\boldsymbol{{bg}}}{\boldsymbol{{ab}}−\boldsymbol{{h}}^{\mathrm{2}} }\:\:;\:\:\:\boldsymbol{{q}}\:=\:\frac{\boldsymbol{{gh}}−\boldsymbol{{af}}}{\boldsymbol{{ab}}−\boldsymbol{{h}}^{\mathrm{2}} }\:\:. \\ $$$$\:\:\:\:\:\: \\ $$

Commented by ajfour last updated on 14/Oct/18

((coeff. of xy)/(coeff. of x^2 −coeff. of y^2 ))        = ((2sin φcos φ((1/A^2 )−(1/B^2 )))/((cos^2 φ−sin^2 φ)((1/A^2 )−(1/B^2 ))))                      = ((2h)/(a−b))    ⇒  tan 2φ = ((2h)/(a−b))  .

$$\frac{{coeff}.\:{of}\:{xy}}{{coeff}.\:{of}\:{x}^{\mathrm{2}} −{coeff}.\:{of}\:{y}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:=\:\frac{\mathrm{2sin}\:\phi\mathrm{cos}\:\phi\left(\frac{\mathrm{1}}{{A}^{\mathrm{2}} }−\frac{\mathrm{1}}{{B}^{\mathrm{2}} }\right)}{\left(\mathrm{cos}\:^{\mathrm{2}} \phi−\mathrm{sin}\:^{\mathrm{2}} \phi\right)\left(\frac{\mathrm{1}}{{A}^{\mathrm{2}} }−\frac{\mathrm{1}}{{B}^{\mathrm{2}} }\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{2}{h}}{{a}−{b}}\:\: \\ $$$$\Rightarrow\:\:\mathrm{tan}\:\mathrm{2}\phi\:=\:\frac{\mathrm{2}{h}}{{a}−{b}}\:\:. \\ $$

Commented by MrW3 last updated on 14/Oct/18

thanks a lot sir!

$${thanks}\:{a}\:{lot}\:{sir}! \\ $$

Answered by MJS last updated on 14/Oct/18

solving the given equation for x and y  x=−((hy+g)/a)±(√(...))  y=−((hx+f)/b)±(√(...))  x=−((hy+g)/a) ∧ y=−((hx+f)/b) ⇒  ⇒ x=((fh−bg)/(ab−h^2 )) ∧ y=((gh−af)/(ab−h^2 ))  no matter what kind of conic the equation is,  the center is  ((((fh−bg)/(ab−h^2 ))),(((gh−af)/(ab−h^2 ))) )

$$\mathrm{solving}\:\mathrm{the}\:\mathrm{given}\:\mathrm{equation}\:\mathrm{for}\:{x}\:\mathrm{and}\:{y} \\ $$$${x}=−\frac{{hy}+{g}}{{a}}\pm\sqrt{...} \\ $$$${y}=−\frac{{hx}+{f}}{{b}}\pm\sqrt{...} \\ $$$${x}=−\frac{{hy}+{g}}{{a}}\:\wedge\:{y}=−\frac{{hx}+{f}}{{b}}\:\Rightarrow \\ $$$$\Rightarrow\:{x}=\frac{{fh}−{bg}}{{ab}−{h}^{\mathrm{2}} }\:\wedge\:{y}=\frac{{gh}−{af}}{{ab}−{h}^{\mathrm{2}} } \\ $$$$\mathrm{no}\:\mathrm{matter}\:\mathrm{what}\:\mathrm{kind}\:\mathrm{of}\:\mathrm{conic}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{is}, \\ $$$$\mathrm{the}\:\mathrm{center}\:\mathrm{is}\:\begin{pmatrix}{\frac{{fh}−{bg}}{{ab}−{h}^{\mathrm{2}} }}\\{\frac{{gh}−{af}}{{ab}−{h}^{\mathrm{2}} }}\end{pmatrix} \\ $$

Commented by ajfour last updated on 14/Oct/18

thanks for the simple way sir.

$${thanks}\:{for}\:{the}\:{simple}\:{way}\:{sir}. \\ $$

Commented by MrW3 last updated on 14/Oct/18

thanks a lot sir!

$${thanks}\:{a}\:{lot}\:{sir}! \\ $$

Commented by MJS last updated on 14/Oct/18

you′re welcome

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com