Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 45575 by rahul 19 last updated on 14/Oct/18

Commented by rahul 19 last updated on 14/Oct/18

My doubt:  If i will take both points on same side  of plane (wrong method) and will  take points on opposite side i will get   same answer....  it is always true?  right???

$${My}\:{doubt}: \\ $$$${If}\:{i}\:{will}\:{take}\:{both}\:{points}\:{on}\:{same}\:{side} \\ $$$${of}\:{plane}\:\left({wrong}\:{method}\right)\:{and}\:{will} \\ $$$${take}\:{points}\:{on}\:{opposite}\:{side}\:{i}\:{will}\:{get}\: \\ $$$${same}\:{answer}....\:\:{it}\:{is}\:{always}\:{true}? \\ $$$${right}??? \\ $$

Commented by MrW3 last updated on 14/Oct/18

Commented by MrW3 last updated on 14/Oct/18

projection of P_1 P_2  and P_1 P_2 ′ is the same,  i.e. Q_1 Q_(2.)

$${projection}\:{of}\:{P}_{\mathrm{1}} {P}_{\mathrm{2}} \:{and}\:{P}_{\mathrm{1}} {P}_{\mathrm{2}} '\:{is}\:{the}\:{same}, \\ $$$${i}.{e}.\:{Q}_{\mathrm{1}} {Q}_{\mathrm{2}.} \\ $$

Commented by rahul 19 last updated on 14/Oct/18

thanks sir!

$${thanks}\:{sir}! \\ $$

Answered by MrW3 last updated on 14/Oct/18

projection of point (5,−1,4) is (x_1 ,y_1 ,z_1 ):  x_1 =5−((1×(5−1+4−7))/3)=5−((1×1)/3)=((14)/3)  y_1 =−1−((1×(5−1+4−7))/3)=−1−((1×1)/3)=−(4/3)  z_1 =4−((1×(5−1+4−7))/3)=4−((1×1)/3)=((11)/3)  projection of point (4,−1,3) is (x_2 ,y_2 ,z_2 ):  x_2 =4−((1×(4−1+3−7))/3)=4−((1×(−1))/3)=((13)/3)  y_2 =−1−((1×(4−1+3−7))/3)=−1−((1×(−1))/3)=−(2/3)  z_2 =3−((1×(4−1+3−7))/3)=3−((1×(−1))/3)=((10)/3)  length of projection:  L=(1/3)(√((14−13)^2 +(−4+2)^2 +(11−10)^2 ))=(√(2/3))

$${projection}\:{of}\:{point}\:\left(\mathrm{5},−\mathrm{1},\mathrm{4}\right)\:{is}\:\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} ,{z}_{\mathrm{1}} \right): \\ $$$${x}_{\mathrm{1}} =\mathrm{5}−\frac{\mathrm{1}×\left(\mathrm{5}−\mathrm{1}+\mathrm{4}−\mathrm{7}\right)}{\mathrm{3}}=\mathrm{5}−\frac{\mathrm{1}×\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{14}}{\mathrm{3}} \\ $$$${y}_{\mathrm{1}} =−\mathrm{1}−\frac{\mathrm{1}×\left(\mathrm{5}−\mathrm{1}+\mathrm{4}−\mathrm{7}\right)}{\mathrm{3}}=−\mathrm{1}−\frac{\mathrm{1}×\mathrm{1}}{\mathrm{3}}=−\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${z}_{\mathrm{1}} =\mathrm{4}−\frac{\mathrm{1}×\left(\mathrm{5}−\mathrm{1}+\mathrm{4}−\mathrm{7}\right)}{\mathrm{3}}=\mathrm{4}−\frac{\mathrm{1}×\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{11}}{\mathrm{3}} \\ $$$${projection}\:{of}\:{point}\:\left(\mathrm{4},−\mathrm{1},\mathrm{3}\right)\:{is}\:\left({x}_{\mathrm{2}} ,{y}_{\mathrm{2}} ,{z}_{\mathrm{2}} \right): \\ $$$${x}_{\mathrm{2}} =\mathrm{4}−\frac{\mathrm{1}×\left(\mathrm{4}−\mathrm{1}+\mathrm{3}−\mathrm{7}\right)}{\mathrm{3}}=\mathrm{4}−\frac{\mathrm{1}×\left(−\mathrm{1}\right)}{\mathrm{3}}=\frac{\mathrm{13}}{\mathrm{3}} \\ $$$${y}_{\mathrm{2}} =−\mathrm{1}−\frac{\mathrm{1}×\left(\mathrm{4}−\mathrm{1}+\mathrm{3}−\mathrm{7}\right)}{\mathrm{3}}=−\mathrm{1}−\frac{\mathrm{1}×\left(−\mathrm{1}\right)}{\mathrm{3}}=−\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${z}_{\mathrm{2}} =\mathrm{3}−\frac{\mathrm{1}×\left(\mathrm{4}−\mathrm{1}+\mathrm{3}−\mathrm{7}\right)}{\mathrm{3}}=\mathrm{3}−\frac{\mathrm{1}×\left(−\mathrm{1}\right)}{\mathrm{3}}=\frac{\mathrm{10}}{\mathrm{3}} \\ $$$${length}\:{of}\:{projection}: \\ $$$${L}=\frac{\mathrm{1}}{\mathrm{3}}\sqrt{\left(\mathrm{14}−\mathrm{13}\right)^{\mathrm{2}} +\left(−\mathrm{4}+\mathrm{2}\right)^{\mathrm{2}} +\left(\mathrm{11}−\mathrm{10}\right)^{\mathrm{2}} }=\sqrt{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18

distance between (5,−1,4) and (4,−1,3)  (√((5−4)^2 +(−1+1)^2 +(4−3)^2 )) =(√2)   the st line joining (5,−1,4) and(4,−1,3)  ((x−5)/(4−5))=((y+1)/0)=((z−4)/(3−4))=→((x−5)/1)=((y+1)/0)=((z−4)/1)  angle between normsl to the plane and the st  line cosθ=((1×1+0×1+1×1)/((√(1^2 +1^2 +1^2 ))  ×(√(1^2 +o^2 +1^2 )))) =(2/((√3) ×(√2) ))  sinθ=((√2)/((√6) ))  projection=p  sinθ=(p/d)   p=dsinθ=(√2) ×((√2)/(√6))=((√2)/(√3))

$${distance}\:{between}\:\left(\mathrm{5},−\mathrm{1},\mathrm{4}\right)\:{and}\:\left(\mathrm{4},−\mathrm{1},\mathrm{3}\right) \\ $$$$\sqrt{\left(\mathrm{5}−\mathrm{4}\right)^{\mathrm{2}} +\left(−\mathrm{1}+\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{4}−\mathrm{3}\right)^{\mathrm{2}} }\:=\sqrt{\mathrm{2}}\: \\ $$$${the}\:{st}\:{line}\:{joining}\:\left(\mathrm{5},−\mathrm{1},\mathrm{4}\right)\:{and}\left(\mathrm{4},−\mathrm{1},\mathrm{3}\right) \\ $$$$\frac{{x}−\mathrm{5}}{\mathrm{4}−\mathrm{5}}=\frac{{y}+\mathrm{1}}{\mathrm{0}}=\frac{{z}−\mathrm{4}}{\mathrm{3}−\mathrm{4}}=\rightarrow\frac{{x}−\mathrm{5}}{\mathrm{1}}=\frac{{y}+\mathrm{1}}{\mathrm{0}}=\frac{{z}−\mathrm{4}}{\mathrm{1}} \\ $$$${angle}\:{between}\:{normsl}\:{to}\:{the}\:{plane}\:{and}\:{the}\:{st} \\ $$$${line}\:{cos}\theta=\frac{\mathrm{1}×\mathrm{1}+\mathrm{0}×\mathrm{1}+\mathrm{1}×\mathrm{1}}{\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }\:\:×\sqrt{\mathrm{1}^{\mathrm{2}} +{o}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }}\:=\frac{\mathrm{2}}{\sqrt{\mathrm{3}}\:×\sqrt{\mathrm{2}}\:} \\ $$$${sin}\theta=\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{6}}\:} \\ $$$${projection}={p} \\ $$$${sin}\theta=\frac{{p}}{{d}}\:\:\:{p}={dsin}\theta=\sqrt{\mathrm{2}}\:×\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{6}}}=\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{3}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com