Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 45585 by pieroo last updated on 14/Oct/18

prove that1^3 +2^3 +3^3 +...+n^3 =((n^2 (n+1)^2 )/4) for every  natural number n

$$\mathrm{prove}\:\mathrm{that1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +...+\mathrm{n}^{\mathrm{3}} =\frac{\mathrm{n}^{\mathrm{2}} \left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\:\mathrm{for}\:\mathrm{every} \\ $$$$\mathrm{natural}\:\mathrm{number}\:\boldsymbol{\mathrm{n}} \\ $$

Commented by maxmathsup by imad last updated on 14/Oct/18

let p(x)=((x^2 (x−1)^2 )/4)  we have p(x+1)−p(x)=(((x+1)^2 x^2 )/4) −((x^2 (x−1)^2 )/4)  =(x^2 /4){(x+1)^2 −(x−1)^2 }=(x^2 /4){x^2 +2x+1−x^2 +2x−1}=x^3   ⇒  Σ_(k=1) ^n (p(k+1)−p(k))=Σ_(k=1) ^n k^3   ⇒Σ_(k=1) ^n k^3  =p(n+1)−p(1  =(((n+1)^2 n^2 )/4)   =((n^2 (n+1)^2 )/4) .

$${let}\:{p}\left({x}\right)=\frac{{x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\:\:{we}\:{have}\:{p}\left({x}+\mathrm{1}\right)−{p}\left({x}\right)=\frac{\left({x}+\mathrm{1}\right)^{\mathrm{2}} {x}^{\mathrm{2}} }{\mathrm{4}}\:−\frac{{x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\left\{\left({x}+\mathrm{1}\right)^{\mathrm{2}} −\left({x}−\mathrm{1}\right)^{\mathrm{2}} \right\}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\left\{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}−{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\right\}={x}^{\mathrm{3}} \:\:\Rightarrow \\ $$$$\sum_{{k}=\mathrm{1}} ^{{n}} \left({p}\left({k}+\mathrm{1}\right)−{p}\left({k}\right)\right)=\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{3}} \:\:\Rightarrow\sum_{{k}=\mathrm{1}} ^{{n}} {k}^{\mathrm{3}} \:={p}\left({n}+\mathrm{1}\right)−{p}\left(\mathrm{1}\right. \\ $$$$=\frac{\left({n}+\mathrm{1}\right)^{\mathrm{2}} {n}^{\mathrm{2}} }{\mathrm{4}}\:\:\:=\frac{{n}^{\mathrm{2}} \left({n}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}\:. \\ $$

Commented by pieroo last updated on 14/Oct/18

thanks very much sir.

$$\mathrm{thanks}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18

Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18

Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18

Commented by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Oct/18

another general method...  S_r =1^r +2^r +3^r +...+n^r   formuls is S_r =r∫S_(r−1) dn+nB_r   now if we know s_1 =1+2+3+...+n  we can find S_2 =1^2 +2^2 +3^2 +...+n^2   S_3 =1^3 +2^3 +3^3 +..+n^3   S_(40) =1^(40) +2^(40) +3^(40) +...+n^(40)   now s_1 =((n(n+1))/2)=(n^2 /2)+(n/2)  S_r =r∫S_(r−1) dn+nB_r   so S_2 =2∫S_1 dn+nB_2               =2∫((n^2 /2)+(n/2))dn+nB_2               =2[(n^3 /6)+(n^2 /4)]+n×(1/6)   B_2 =(1/6) (see table)              =(n^3 /3)+(n^2 /2)+(n/6)=((2n^3 +3n^2 +n)/6)         =((n(2n^2 +3n+1))/6)=(n/6)(2n^2 +2n+n+1)  =((n(n+1)(2n+1))/6)  using this we can find S_3 =3∫S_2 dn+nB_3   S_3 =3∫(n^3 /3)+(n^2 /2)+(n/6)+n×0    B_3 =0        =3((n^4 /(12))+(n^3 /6)+(n^2 /(12)))=(n^4 /4)+(n^3 /2)+(n^2 /4)=(n^2 /4)(n^2 +2n+1)      =(n^2 /4)(n+1)^2 ={((n(n+1))/2)}^2    is the answer

$${another}\:{general}\:{method}... \\ $$$${S}_{{r}} =\mathrm{1}^{{r}} +\mathrm{2}^{{r}} +\mathrm{3}^{{r}} +...+{n}^{{r}} \\ $$$${formuls}\:{is}\:{S}_{{r}} ={r}\int{S}_{{r}−\mathrm{1}} {dn}+{nB}_{{r}} \\ $$$${now}\:{if}\:{we}\:{know}\:{s}_{\mathrm{1}} =\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n} \\ $$$${we}\:{can}\:{find}\:{S}_{\mathrm{2}} =\mathrm{1}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +...+{n}^{\mathrm{2}} \\ $$$${S}_{\mathrm{3}} =\mathrm{1}^{\mathrm{3}} +\mathrm{2}^{\mathrm{3}} +\mathrm{3}^{\mathrm{3}} +..+{n}^{\mathrm{3}} \\ $$$${S}_{\mathrm{40}} =\mathrm{1}^{\mathrm{40}} +\mathrm{2}^{\mathrm{40}} +\mathrm{3}^{\mathrm{40}} +...+{n}^{\mathrm{40}} \\ $$$${now}\:{s}_{\mathrm{1}} =\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}=\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{2}} \\ $$$${S}_{{r}} ={r}\int{S}_{{r}−\mathrm{1}} {dn}+{nB}_{{r}} \\ $$$${so}\:{S}_{\mathrm{2}} =\mathrm{2}\int{S}_{\mathrm{1}} {dn}+{nB}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\int\left(\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{2}}\right){dn}+{nB}_{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}\left[\frac{{n}^{\mathrm{3}} }{\mathrm{6}}+\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\right]+{n}×\frac{\mathrm{1}}{\mathrm{6}}\:\:\:{B}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}}\:\left({see}\:{table}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{n}^{\mathrm{3}} }{\mathrm{3}}+\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{6}}=\frac{\mathrm{2}{n}^{\mathrm{3}} +\mathrm{3}{n}^{\mathrm{2}} +{n}}{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:=\frac{{n}\left(\mathrm{2}{n}^{\mathrm{2}} +\mathrm{3}{n}+\mathrm{1}\right)}{\mathrm{6}}=\frac{{n}}{\mathrm{6}}\left(\mathrm{2}{n}^{\mathrm{2}} +\mathrm{2}{n}+{n}+\mathrm{1}\right) \\ $$$$=\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}} \\ $$$${using}\:{this}\:{we}\:{can}\:{find}\:{S}_{\mathrm{3}} =\mathrm{3}\int{S}_{\mathrm{2}} {dn}+{nB}_{\mathrm{3}} \\ $$$${S}_{\mathrm{3}} =\mathrm{3}\int\frac{{n}^{\mathrm{3}} }{\mathrm{3}}+\frac{{n}^{\mathrm{2}} }{\mathrm{2}}+\frac{{n}}{\mathrm{6}}+{n}×\mathrm{0}\:\:\:\:{B}_{\mathrm{3}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:=\mathrm{3}\left(\frac{{n}^{\mathrm{4}} }{\mathrm{12}}+\frac{{n}^{\mathrm{3}} }{\mathrm{6}}+\frac{{n}^{\mathrm{2}} }{\mathrm{12}}\right)=\frac{{n}^{\mathrm{4}} }{\mathrm{4}}+\frac{{n}^{\mathrm{3}} }{\mathrm{2}}+\frac{{n}^{\mathrm{2}} }{\mathrm{4}}=\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\left({n}^{\mathrm{2}} +\mathrm{2}{n}+\mathrm{1}\right) \\ $$$$\:\:\:\:=\frac{{n}^{\mathrm{2}} }{\mathrm{4}}\left({n}+\mathrm{1}\right)^{\mathrm{2}} =\left\{\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\right\}^{\mathrm{2}} \:\:\:{is}\:{the}\:{answer} \\ $$

Commented by pieroo last updated on 14/Oct/18

wow, i love this

$$\mathrm{wow},\:\mathrm{i}\:\mathrm{love}\:\mathrm{this}\: \\ $$

Commented by pieroo last updated on 14/Oct/18

Sir thank you very much, but please help me with  Question number 45353

$$\mathrm{Sir}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much},\:\mathrm{but}\:\mathrm{please}\:\mathrm{help}\:\mathrm{me}\:\mathrm{with} \\ $$$$\mathrm{Question}\:\mathrm{number}\:\mathrm{45353} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com