Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 45594 by maxmathsup by imad last updated on 14/Oct/18

calculate Σ_(n=1) ^∞    (1/((4n^2 −1)^2 ))

calculaten=11(4n21)2

Commented by maxmathsup by imad last updated on 18/Oct/18

let S_n =Σ_(k=1) ^n  (1/((4k^2 −1)^2 ))  ⇒S_n =Σ_(k=1) ^n  (1/((2k−1)^2 (2k+1)^2 ))  let decompose  F(x)=(1/((2x−1)^2 (2x+1)^2 )) ⇒F(x)=(a/(2x−1)) +(b/((2x−1)^2 )) +(c/(2x+1)) +(d/((2x+1)^2 ))  b =lim_(x→(1/2))   (2x−1)^2 F(x)=(1/4)  d =lim_(x→−(1/2))  (2x+1)^2 F(x) =(1/4) ⇒F(x)=(a/(2x−1)) +(1/(4(2x−1)^2 )) +(c/((2x+1))) +(d/(4(2x+)^2 ))  lim_(x→+∞) x F(x)=0 =(a/2) +(c/2) ⇒c=−a ⇒  F(x)=(a/(2x−1)) −(a/(2x+1)) + (1/(4(2x−1)^2 )) +(1/(4(2x+1)^2 ))  F(0)=1 =−2a +(1/2) ⇒(1/2) =−2a ⇒a=−(1/4) ⇒  F(x)=(1/(4(2x+1)))−(1/(4(2x−1))) +(1/(4(2x−1)^2 )) +(1/(4(2x+1)^2 )) ⇒  S_n =Σ_(k=1) ^n F(k)=(1/4) Σ_(k=1) ^n (1/(2k+1)) −(1/4)Σ_(k=1) ^n  (1/(2k−1)) +(1/4)Σ_(k=1) ^n  (1/((2k−1)^2 )) +(1/4)Σ_(k=1) ^n (1/((2k+1)^2 ))  (1/4)Σ_(k=1) ^n {(1/(2k+1))−(1/(2k−1))} =(1/4)Σ_(k=1) ^n  v_k −v_(k−1) =(1/4)(v_n −v_0  )    (v_n =(1/(2k+1)))  =(1/4)((1/(2n+1)) −1) →−(1/4)(n→+∞)  we have(1/4) {Σ_(k=1) ^n  (1/((2k−1)^2 )) +Σ_(k=1) ^n (1/((2k+1)^2 ))}→(1/4){Σ_(n=1) ^∞  (1/((2n−1)^2 )) +Σ_(n=1) ^∞ (1/((2n+1)^2 ))}  but Σ_(n=1) ^∞  (1/n^2 ) =Σ_(n=1) ^∞  (1/(4n^2 )) +Σ_(n=0) ^∞ (1/((2n+1)^2 )) ⇒  Σ_(n=0) ^∞   (1/((2n+1)^2 )) =(3/4) (π^2 /6) =(π^2 /8) ⇒Σ_(n=1) ^∞  (1/((2n+1)^2 )) =(π^2 /8) −1  Σ_(n=1) ^∞    (1/((2n−1)^2 )) =_(n=k+1)  Σ_(k=0) ^∞   (1/((2k+1)^2 )) =(π^2 /8) ⇒  lim_(n→+∞)  S_n =−(1/4) +(1/4){(π^2 /8)−1 +(π^2 /8)}=(1/4){(π^2 /4) −1)−(1/4)  =(π^2 /(16)) −(1/2) .

letSn=k=1n1(4k21)2Sn=k=1n1(2k1)2(2k+1)2letdecomposeF(x)=1(2x1)2(2x+1)2F(x)=a2x1+b(2x1)2+c2x+1+d(2x+1)2b=limx12(2x1)2F(x)=14d=limx12(2x+1)2F(x)=14F(x)=a2x1+14(2x1)2+c(2x+1)+d4(2x+)2limx+xF(x)=0=a2+c2c=aF(x)=a2x1a2x+1+14(2x1)2+14(2x+1)2F(0)=1=2a+1212=2aa=14F(x)=14(2x+1)14(2x1)+14(2x1)2+14(2x+1)2Sn=k=1nF(k)=14k=1n12k+114k=1n12k1+14k=1n1(2k1)2+14k=1n1(2k+1)214k=1n{12k+112k1}=14k=1nvkvk1=14(vnv0)(vn=12k+1)=14(12n+11)14(n+)wehave14{k=1n1(2k1)2+k=1n1(2k+1)2}14{n=11(2n1)2+n=11(2n+1)2}butn=11n2=n=114n2+n=01(2n+1)2n=01(2n+1)2=34π26=π28n=11(2n+1)2=π281n=11(2n1)2=n=k+1k=01(2k+1)2=π28limn+Sn=14+14{π281+π28}=14{π241)14=π21612.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com