All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 45594 by maxmathsup by imad last updated on 14/Oct/18
calculate∑n=1∞1(4n2−1)2
Commented by maxmathsup by imad last updated on 18/Oct/18
letSn=∑k=1n1(4k2−1)2⇒Sn=∑k=1n1(2k−1)2(2k+1)2letdecomposeF(x)=1(2x−1)2(2x+1)2⇒F(x)=a2x−1+b(2x−1)2+c2x+1+d(2x+1)2b=limx→12(2x−1)2F(x)=14d=limx→−12(2x+1)2F(x)=14⇒F(x)=a2x−1+14(2x−1)2+c(2x+1)+d4(2x+)2limx→+∞xF(x)=0=a2+c2⇒c=−a⇒F(x)=a2x−1−a2x+1+14(2x−1)2+14(2x+1)2F(0)=1=−2a+12⇒12=−2a⇒a=−14⇒F(x)=14(2x+1)−14(2x−1)+14(2x−1)2+14(2x+1)2⇒Sn=∑k=1nF(k)=14∑k=1n12k+1−14∑k=1n12k−1+14∑k=1n1(2k−1)2+14∑k=1n1(2k+1)214∑k=1n{12k+1−12k−1}=14∑k=1nvk−vk−1=14(vn−v0)(vn=12k+1)=14(12n+1−1)→−14(n→+∞)wehave14{∑k=1n1(2k−1)2+∑k=1n1(2k+1)2}→14{∑n=1∞1(2n−1)2+∑n=1∞1(2n+1)2}but∑n=1∞1n2=∑n=1∞14n2+∑n=0∞1(2n+1)2⇒∑n=0∞1(2n+1)2=34π26=π28⇒∑n=1∞1(2n+1)2=π28−1∑n=1∞1(2n−1)2=n=k+1∑k=0∞1(2k+1)2=π28⇒limn→+∞Sn=−14+14{π28−1+π28}=14{π24−1)−14=π216−12.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com