Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 45598 by maxmathsup by imad last updated on 14/Oct/18

calculate Σ_(n=1) ^∞     ((2n+1)/(n^2 (4n^2 −1)))

calculaten=12n+1n2(4n21)

Commented by maxmathsup by imad last updated on 15/Oct/18

let S_n =Σ_(k=1) ^n   ((2k+1)/(k^2 (4k^2 −1)))    we have  S_n =Σ_(k=1) ^n   ((2k+1)/(k^2 (2k+1)(2k−1)))  =Σ_(k=1) ^n    (1/(k^2 (2k−1)))  let decompose F(x)=(1/(x^2 (2x−1)))  F(x)=(a/x) +(b/x^2 ) +(c/(2x−1))  b =lim_(x→0) x^2 F(x) =−1  c =lim_(x→(1/2))   (2x−1)F(x) =4 ⇒F(x)=(a/x) −(1/x^2 ) +(4/(2x−1))  F(1)=1 =a−1 +4 =a+3 ⇒a=−2 ⇒F(x)=−(2/x) −(1/x^2 ) +(4/(2x−1)) ⇒  Σ_(k=1) ^n  F(k) =−2 Σ_(k=1) ^n  (1/k) −Σ_(k=1) ^n  (1/k^2 ) +4 Σ_(k=1) ^n  (1/(2k−1)) but  Σ_(k=1) ^n  (1/k) =H_n   Σ_(k=1) ^n  (1/k^2 ) =ξ_n (2)  Σ_(k=1) ^n  (1/(2k−1)) = 1 +(1/3) +(1/5) +...+(1/(2n−1))   =1+(1/2) +(1/3)+(1/4) +(1/5) +....+(1/(2n−1)) +(1/(2n)) −(1/2) (1+(1/2) +....+(1/n))  =H_(2n) −(1/2)H_n  ⇒ S_n = −2 H_n −ξ_n (2)+4 H_(2n) −2H_n   =4{ H_(2n) −H_n }−ξ_n (2)  but  H_(2n)  =ln(2n)+γ +o((1/n))  and H_n =ln(n)+γ +o((1/n)) ⇒  H_(2n) −H_n =ln(((2n)/n))+o((1/n)) →ln(2)(n→+∞) also  ξ_n (2)→ξ(2) =(π^2 /6) (n→+∞) ⇒ S=lim_(n→+∞) S_n = 4ln(2)−(π^2 /6) .

letSn=k=1n2k+1k2(4k21)wehaveSn=k=1n2k+1k2(2k+1)(2k1)=k=1n1k2(2k1)letdecomposeF(x)=1x2(2x1)F(x)=ax+bx2+c2x1b=limx0x2F(x)=1c=limx12(2x1)F(x)=4F(x)=ax1x2+42x1F(1)=1=a1+4=a+3a=2F(x)=2x1x2+42x1k=1nF(k)=2k=1n1kk=1n1k2+4k=1n12k1butk=1n1k=Hnk=1n1k2=ξn(2)k=1n12k1=1+13+15+...+12n1=1+12+13+14+15+....+12n1+12n12(1+12+....+1n)=H2n12HnSn=2Hnξn(2)+4H2n2Hn=4{H2nHn}ξn(2)butH2n=ln(2n)+γ+o(1n)andHn=ln(n)+γ+o(1n)H2nHn=ln(2nn)+o(1n)ln(2)(n+)alsoξn(2)ξ(2)=π26(n+)S=limn+Sn=4ln(2)π26.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com