All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 45598 by maxmathsup by imad last updated on 14/Oct/18
calculate∑n=1∞2n+1n2(4n2−1)
Commented by maxmathsup by imad last updated on 15/Oct/18
letSn=∑k=1n2k+1k2(4k2−1)wehaveSn=∑k=1n2k+1k2(2k+1)(2k−1)=∑k=1n1k2(2k−1)letdecomposeF(x)=1x2(2x−1)F(x)=ax+bx2+c2x−1b=limx→0x2F(x)=−1c=limx→12(2x−1)F(x)=4⇒F(x)=ax−1x2+42x−1F(1)=1=a−1+4=a+3⇒a=−2⇒F(x)=−2x−1x2+42x−1⇒∑k=1nF(k)=−2∑k=1n1k−∑k=1n1k2+4∑k=1n12k−1but∑k=1n1k=Hn∑k=1n1k2=ξn(2)∑k=1n12k−1=1+13+15+...+12n−1=1+12+13+14+15+....+12n−1+12n−12(1+12+....+1n)=H2n−12Hn⇒Sn=−2Hn−ξn(2)+4H2n−2Hn=4{H2n−Hn}−ξn(2)butH2n=ln(2n)+γ+o(1n)andHn=ln(n)+γ+o(1n)⇒H2n−Hn=ln(2nn)+o(1n)→ln(2)(n→+∞)alsoξn(2)→ξ(2)=π26(n→+∞)⇒S=limn→+∞Sn=4ln(2)−π26.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com