Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45600 by maxmathsup by imad last updated on 14/Oct/18

find f(x,y) =∫_0 ^(π/2) ln(x+y sinθ)dθ  with  ∣y∣<∣x∣  2) find f(2,3)  3)find f((√2),(√3)) .

findf(x,y)=0π2ln(x+ysinθ)dθwithy∣<∣x 2)findf(2,3) 3)findf(2,3).

Commented bymaxmathsup by imad last updated on 15/Oct/18

1) we have (∂f/∂x)(x,y) =∫_0 ^(π/2)    (dθ/(x+ysinθ)) changement tan((θ/2))=t give  (∂f/∂x)(x,y) = ∫_0 ^1       ((2dt)/((1+t^2 )(x+y((2t)/(1+t^2 ))))) =∫_0 ^1    ((2dt)/((1+t^2 )x +2yt))  =∫_0 ^1     ((2dt)/(x +xt^2  +2yt)) =∫_0 ^1    ((2dt)/(xt^2  +2yt +x))  roots of p(x)=xt^2  +2yt +x  Δ^′ =y^2 −x^2  <0 ⇒no roots but xt^2  +2yt +x  =x(t^2  +2(y/x)t +1)  =x(  (t+(y/x))^2  +1−(y^2 /x^2 )) =x{ (t+(y/x))^2  +((x^2 −y^2 )/x^2 )} changement   t+(y/x) =((√(x^2 −y^2 ))/(∣x∣)) u give  ∫_0 ^1   ((2dt)/(xt^2  +2yt +x)) = ∫_(((∣x∣)/x)(y/(√(x^2 −y^2 )))) ^(((∣x∣)/x)((x+y)/(√(x^2 −y^2 ))))    (2/(x((x^2 −y^2 )/x^2 ){1+u^2 }))((√(x^2 −y^2 ))/(∣x∣))du  =∫_((yξ(x))/(√(x^2 −y^2 ))) ^(((x+y)ξ(x))/(√(x^2 −y^2 )))    (2/(ξ(x)(√(x^2 −y^2 )))) (du/(1+u^2 ))  =(2/(ξ(x)(√(x^2 −y^2 )))) { arctan((((x+y)ξ(x))/(√(x^2 −y^2 ))))−arctan(((yξ(x))/(√(x^2 −y^2 ))))}=(∂f/∂x)(x,y) ⇒  f(x,y) =(2/(ξ(x))) ∫   (1/(√(x^2 −y^2 ))) arctan((((x+y)ξ(x))/(√(x^2 −y^2 ))))dx−(2/(ξ(x))) ∫(1/(√(x^2 −y^2 )))arctan(((yξ(x))/(√(x^2 −y^2 ))))dx+k  ξ(x)=1 if x>0 and ξ(x)=−1 if x<0 ...be continued...

1)wehavefx(x,y)=0π2dθx+ysinθchangementtan(θ2)=tgive fx(x,y)=012dt(1+t2)(x+y2t1+t2)=012dt(1+t2)x+2yt =012dtx+xt2+2yt=012dtxt2+2yt+xrootsofp(x)=xt2+2yt+x Δ=y2x2<0norootsbutxt2+2yt+x=x(t2+2yxt+1) =x((t+yx)2+1y2x2)=x{(t+yx)2+x2y2x2}changement t+yx=x2y2xugive012dtxt2+2yt+x=xxyx2y2xxx+yx2y22xx2y2x2{1+u2}x2y2xdu =yξ(x)x2y2(x+y)ξ(x)x2y22ξ(x)x2y2du1+u2 =2ξ(x)x2y2{arctan((x+y)ξ(x)x2y2)arctan(yξ(x)x2y2)}=fx(x,y) f(x,y)=2ξ(x)1x2y2arctan((x+y)ξ(x)x2y2)dx2ξ(x)1x2y2arctan(yξ(x)x2y2)dx+k ξ(x)=1ifx>0andξ(x)=1ifx<0...becontinued...

Commented bymaxmathsup by imad last updated on 15/Oct/18

2)f(2,3)=∫_0 ^(π/2) ln(2+3sinθ)dθ    f(2,3)= ∫_0 ^(π/2) ln(3((2/3)+sinθ))dθ =(π/2)ln(3) +∫_0 ^(π/2) ln((2/3)+sinθ)dθ  let find ϕ(x)=∫_0 ^(π/2) ln(x+sinθ)dθ  with ∣x∣<1  we have  ϕ^′ (x) = ∫_0 ^(π/2)   (dθ/(x+sinθ)) =_(tan((θ/2))=t)     ∫_0 ^1     (1/(x+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 )) =∫_0 ^1    ((2dt)/(x(1+t^2 ) +2t))  = ∫_0 ^1    ((2dt)/(x +xt^2  +2t)) = ∫_0 ^1    ((2dt)/(xt^2  +2t +x))  Δ^′ =1−x^2 >0  ⇒t_1 =((−1+(√(1−x^2 )))/x)  and t_2 =((−1−(√(1−x^2 )))/x)  (we take x≠0)  F(t)=(1/(xt^2  +2t +x)) =(1/(x(t−t_1 )(t−t_2 ))) =(1/x)(x/(2(√(1−x^2 )))){ (1/(t−t_1 )) −(1/(t−t_2 ))}  =(1/(2(√(1−x^2 )))){ (1/(t−t_1 )) −(1/(t−t_2 ))} ⇒∫_0 ^1 F(t)dt=(1/(2(√(1−x^2 ))))[ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^1   =(1/(2(√(1−x^2 )))){ ln∣((1−t_1 )/(1−t_2 ))∣−ln∣(t_1 /t_2 )∣}=(1/(2(√(1−x^2 ))))ln∣((1−t_1 )/(1−t_2 )).(t_2 /t_1 )∣  =(1/(2(√(1−x^2 ))))ln∣((t_2 −t_1 t_2 )/(t_1 −t_1 t_2 ))∣ =(1/(2(√(1−x^2 ))))ln∣ ((((−1−(√(1−x^2 )))/x) −1)/(((−1+(√(1−x^2 )))/x)−1))∣  =(1/(2(√(1−x^2 ))))ln∣ ((1+((1+(√(1−x^2 )))/x))/(1−((−1+(√(1−x^2 )))/x)))∣=(1/(2(√(1−x^2 ))))ln∣ ((x+1+(√(1−x^2 )))/(x+1−(√(1−x^2 ))))∣ ⇒  ϕ^′ (x) =(1/(√(1−x^2 )))ln(((x+1+(√(1−x^2 )))/(x+1−(√(1−x^2 ))))) ⇒  ϕ(x) =∫_0 ^x    (1/(√(1−u^2 )))ln(((u+1+(√(1−u^2 )))/(u+1−(√(1−u^2 )))))du +c  c=ϕ(0)=∫_0 ^(π/2) ln(sinθ)dθ =−(π/2)ln(2) ⇒  ϕ(x) =∫_0 ^x   (1/(√(1−u^2 )))ln(((u+1+(√(1−u^2 )))/(u+1−(√(1−u^2 )))))du−(π/2)ln(2) ...be continued...

2)f(2,3)=0π2ln(2+3sinθ)dθ f(2,3)=0π2ln(3(23+sinθ))dθ=π2ln(3)+0π2ln(23+sinθ)dθ letfindφ(x)=0π2ln(x+sinθ)dθwithx∣<1wehave φ(x)=0π2dθx+sinθ=tan(θ2)=t011x+2t1+t22dt1+t2=012dtx(1+t2)+2t =012dtx+xt2+2t=012dtxt2+2t+x Δ=1x2>0t1=1+1x2xandt2=11x2x(wetakex0) F(t)=1xt2+2t+x=1x(tt1)(tt2)=1xx21x2{1tt11tt2} =121x2{1tt11tt2}01F(t)dt=121x2[lntt1tt2]01 =121x2{ln1t11t2lnt1t2}=121x2ln1t11t2.t2t1 =121x2lnt2t1t2t1t1t2=121x2ln11x2x11+1x2x1 =121x2ln1+1+1x2x11+1x2x∣=121x2lnx+1+1x2x+11x2 φ(x)=11x2ln(x+1+1x2x+11x2) φ(x)=0x11u2ln(u+1+1u2u+11u2)du+c c=φ(0)=0π2ln(sinθ)dθ=π2ln(2) φ(x)=0x11u2ln(u+1+1u2u+11u2)duπ2ln(2)...becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com