All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 45600 by maxmathsup by imad last updated on 14/Oct/18
findf(x,y)=∫0π2ln(x+ysinθ)dθwith∣y∣<∣x∣ 2)findf(2,3) 3)findf(2,3).
Commented bymaxmathsup by imad last updated on 15/Oct/18
1)wehave∂f∂x(x,y)=∫0π2dθx+ysinθchangementtan(θ2)=tgive ∂f∂x(x,y)=∫012dt(1+t2)(x+y2t1+t2)=∫012dt(1+t2)x+2yt =∫012dtx+xt2+2yt=∫012dtxt2+2yt+xrootsofp(x)=xt2+2yt+x Δ′=y2−x2<0⇒norootsbutxt2+2yt+x=x(t2+2yxt+1) =x((t+yx)2+1−y2x2)=x{(t+yx)2+x2−y2x2}changement t+yx=x2−y2∣x∣ugive∫012dtxt2+2yt+x=∫∣x∣xyx2−y2∣x∣xx+yx2−y22xx2−y2x2{1+u2}x2−y2∣x∣du =∫yξ(x)x2−y2(x+y)ξ(x)x2−y22ξ(x)x2−y2du1+u2 =2ξ(x)x2−y2{arctan((x+y)ξ(x)x2−y2)−arctan(yξ(x)x2−y2)}=∂f∂x(x,y)⇒ f(x,y)=2ξ(x)∫1x2−y2arctan((x+y)ξ(x)x2−y2)dx−2ξ(x)∫1x2−y2arctan(yξ(x)x2−y2)dx+k ξ(x)=1ifx>0andξ(x)=−1ifx<0...becontinued...
2)f(2,3)=∫0π2ln(2+3sinθ)dθ f(2,3)=∫0π2ln(3(23+sinθ))dθ=π2ln(3)+∫0π2ln(23+sinθ)dθ letfindφ(x)=∫0π2ln(x+sinθ)dθwith∣x∣<1wehave φ′(x)=∫0π2dθx+sinθ=tan(θ2)=t∫011x+2t1+t22dt1+t2=∫012dtx(1+t2)+2t =∫012dtx+xt2+2t=∫012dtxt2+2t+x Δ′=1−x2>0⇒t1=−1+1−x2xandt2=−1−1−x2x(wetakex≠0) F(t)=1xt2+2t+x=1x(t−t1)(t−t2)=1xx21−x2{1t−t1−1t−t2} =121−x2{1t−t1−1t−t2}⇒∫01F(t)dt=121−x2[ln∣t−t1t−t2∣]01 =121−x2{ln∣1−t11−t2∣−ln∣t1t2∣}=121−x2ln∣1−t11−t2.t2t1∣ =121−x2ln∣t2−t1t2t1−t1t2∣=121−x2ln∣−1−1−x2x−1−1+1−x2x−1∣ =121−x2ln∣1+1+1−x2x1−−1+1−x2x∣=121−x2ln∣x+1+1−x2x+1−1−x2∣⇒ φ′(x)=11−x2ln(x+1+1−x2x+1−1−x2)⇒ φ(x)=∫0x11−u2ln(u+1+1−u2u+1−1−u2)du+c c=φ(0)=∫0π2ln(sinθ)dθ=−π2ln(2)⇒ φ(x)=∫0x11−u2ln(u+1+1−u2u+1−1−u2)du−π2ln(2)...becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com