Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 45638 by peter frank last updated on 14/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Oct/18

(x^2 /a^2 )−(y^2 /b^2 )=1   (asecθ,btanθ) lies on hyperbola  eqn of tangent  at(x_1 ,y_1 ) is  ((xx_1 )/a^2 )−((yy_1 )/b^2 )=1  here (x_1 ,y_1 )=(asecθ,btanθ)  ((x×asecθ)/a^2 )−((y×btanθ)/b^2 )=1  ((xsecθ)/a)−((ytanθ)/b)=1  the foci of hyperbola are(±(√(a^2 +b^2 )) ,0)  xbsecθ−yatanθ−ab=0  distancdfrom((√(a^2 +b^2 )),^� 0) to the above tangent  is P_1  and (−(√(a^2 +b^2 )) ,0) isP_2   to prove ∣P_1 P_2 ∣=b^2   P_1 =∣((((√(a^2 +b^2 )) ×bsecθ)−ab)/(√(b^2 sec^2 θ+a^2 tan^2 θ)))∣  P_2 =∣((−(√(a^2 +b^2 )) ×bsecθ−ab)/(√(b^2 sec^2 θ+a^2 tan^2 θ)))∣  P_1 P_2 =(((a^2 +b^2 )b^2 sec^2 θ−a^2 b^2 )/(b^2 sec^2 θ+a^2 tan^2 θ))     =b^2 ×(((a^2 +b^2 )sec^2 θ−a^2 )/(b^2 sec^2 θ+a^2 (sec^2 θ−1)))      =b^2 ×(((a^2 +b^2 )sec^2 θ−a^2 )/((a^2 +b^2 )sec^2 θ−a^2 ))=b^2   proved       ^=

$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }−\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:\:\left({asec}\theta,{btan}\theta\right)\:{lies}\:{on}\:{hyperbola} \\ $$$${eqn}\:{of}\:{tangent}\:\:{at}\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)\:{is} \\ $$$$\frac{{xx}_{\mathrm{1}} }{{a}^{\mathrm{2}} }−\frac{{yy}_{\mathrm{1}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:\:{here}\:\left({x}_{\mathrm{1}} ,{y}_{\mathrm{1}} \right)=\left({asec}\theta,{btan}\theta\right) \\ $$$$\frac{{x}×{asec}\theta}{{a}^{\mathrm{2}} }−\frac{{y}×{btan}\theta}{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{xsec}\theta}{{a}}−\frac{{ytan}\theta}{{b}}=\mathrm{1} \\ $$$${the}\:{foci}\:{of}\:{hyperbola}\:{are}\left(\pm\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:,\mathrm{0}\right) \\ $$$${xbsec}\theta−{yatan}\theta−{ab}=\mathrm{0} \\ $$$${distancdfrom}\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\bar {,}\mathrm{0}\right)\:{to}\:{the}\:{above}\:{tangent} \\ $$$${is}\:{P}_{\mathrm{1}} \:{and}\:\left(−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:,\mathrm{0}\right)\:{isP}_{\mathrm{2}} \\ $$$${to}\:{prove}\:\mid{P}_{\mathrm{1}} {P}_{\mathrm{2}} \mid={b}^{\mathrm{2}} \\ $$$${P}_{\mathrm{1}} =\mid\frac{\left(\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:×{bsec}\theta\right)−{ab}}{\sqrt{{b}^{\mathrm{2}} {sec}^{\mathrm{2}} \theta+{a}^{\mathrm{2}} {tan}^{\mathrm{2}} \theta}}\mid \\ $$$${P}_{\mathrm{2}} =\mid\frac{−\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:×{bsec}\theta−{ab}}{\sqrt{{b}^{\mathrm{2}} {sec}^{\mathrm{2}} \theta+{a}^{\mathrm{2}} {tan}^{\mathrm{2}} \theta}}\mid \\ $$$${P}_{\mathrm{1}} {P}_{\mathrm{2}} =\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){b}^{\mathrm{2}} {sec}^{\mathrm{2}} \theta−{a}^{\mathrm{2}} {b}^{\mathrm{2}} }{{b}^{\mathrm{2}} {sec}^{\mathrm{2}} \theta+{a}^{\mathrm{2}} {tan}^{\mathrm{2}} \theta} \\ $$$$\:\:\:={b}^{\mathrm{2}} ×\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){sec}^{\mathrm{2}} \theta−{a}^{\mathrm{2}} }{{b}^{\mathrm{2}} {sec}^{\mathrm{2}} \theta+{a}^{\mathrm{2}} \left({sec}^{\mathrm{2}} \theta−\mathrm{1}\right)} \\ $$$$\:\:\:\:={b}^{\mathrm{2}} ×\frac{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){sec}^{\mathrm{2}} \theta−{a}^{\mathrm{2}} }{\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right){sec}^{\mathrm{2}} \theta−{a}^{\mathrm{2}} }={b}^{\mathrm{2}} \:\:{proved} \\ $$$$\:\:\:\:\overset{=} {\:} \\ $$$$ \\ $$

Commented by peter frank last updated on 20/Oct/18

sorry sir i dont it get where this come from (±(√(a^2 +b^2 )),0)

$$\mathrm{sorry}\:\mathrm{sir}\:\mathrm{i}\:\mathrm{dont}\:\mathrm{it}\:\mathrm{get}\:\mathrm{where}\:\mathrm{this}\:\mathrm{come}\:\mathrm{from}\:\left(\pm\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} },\mathrm{0}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com