Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 45639 by peter frank last updated on 14/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Oct/18

1)(x^2 /a^2 )+(y^2 /b^2 )=1  (d/dx)((x^2 /a^2 )+(y^2 /b^2 ))=0    ((2x)/a^2 )+((2y)/b^2 )×(dy/dx)=0  (dy/dx)=−(((2x)/a^2 )/((2y)/b^2 ))=−((b^2 x)/(a^2 y))  so slope of tangent at point(acosθ,bsinθ)  m=−((b^2 ×acosθ)/(a^2 ×bsinθ))=−((bcosθ)/(asinθ))  so eqn of tangeng is   (y−bsinθ)=−((bcosθ)/(asinθ))(x−acosθ)  yasinθ−absin^2 θ+xbcosθ−abcos^2 θ=0  yasinθ+xbcosθ=ab  ((ysinθ)/b)+((xcosθ)/a)=1  2)((xcosθ)/a)+((ysinθ)/b)=1  (x/(a/(cosθ)))+(y/(b/(sinθ)))=1    compare this eqn with straightt line in intercepted  form     (x/A)+(y/B)=1   A=(a/(cosθ))=intercept in x axis  B=(b/(sinθ)) intercept on y axis  so area of triangle  (1/2)×(a/(cosθ))×(b/(sinθ))  =((ab)/(sin2θ))

$$\left.\mathrm{1}\right)\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\frac{{d}}{{dx}}\left(\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }\right)=\mathrm{0} \\ $$$$ \\ $$$$\frac{\mathrm{2}{x}}{{a}^{\mathrm{2}} }+\frac{\mathrm{2}{y}}{{b}^{\mathrm{2}} }×\frac{{dy}}{{dx}}=\mathrm{0} \\ $$$$\frac{{dy}}{{dx}}=−\frac{\frac{\mathrm{2}{x}}{{a}^{\mathrm{2}} }}{\frac{\mathrm{2}{y}}{{b}^{\mathrm{2}} }}=−\frac{{b}^{\mathrm{2}} {x}}{{a}^{\mathrm{2}} {y}} \\ $$$${so}\:{slope}\:{of}\:{tangent}\:{at}\:{point}\left({acos}\theta,{bsin}\theta\right) \\ $$$${m}=−\frac{{b}^{\mathrm{2}} ×{acos}\theta}{{a}^{\mathrm{2}} ×{bsin}\theta}=−\frac{{bcos}\theta}{{asin}\theta} \\ $$$${so}\:{eqn}\:{of}\:{tangeng}\:{is}\: \\ $$$$\left({y}−{bsin}\theta\right)=−\frac{{bcos}\theta}{{asin}\theta}\left({x}−{acos}\theta\right) \\ $$$${yasin}\theta−{absin}^{\mathrm{2}} \theta+{xbcos}\theta−{abcos}^{\mathrm{2}} \theta=\mathrm{0} \\ $$$${yasin}\theta+{xbcos}\theta={ab} \\ $$$$\frac{{ysin}\theta}{{b}}+\frac{{xcos}\theta}{{a}}=\mathrm{1} \\ $$$$\left.\mathrm{2}\right)\frac{{xcos}\theta}{{a}}+\frac{{ysin}\theta}{{b}}=\mathrm{1} \\ $$$$\frac{{x}}{\frac{{a}}{{cos}\theta}}+\frac{{y}}{\frac{{b}}{{sin}\theta}}=\mathrm{1}\:\: \\ $$$${compare}\:{this}\:{eqn}\:{with}\:{straightt}\:{line}\:{in}\:{intercepted} \\ $$$${form}\:\:\: \\ $$$$\frac{{x}}{{A}}+\frac{{y}}{{B}}=\mathrm{1}\:\:\:{A}=\frac{{a}}{{cos}\theta}={intercept}\:{in}\:{x}\:{axis} \\ $$$${B}=\frac{{b}}{{sin}\theta}\:{intercept}\:{on}\:{y}\:{axis} \\ $$$${so}\:{area}\:{of}\:{triangle} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\frac{{a}}{{cos}\theta}×\frac{{b}}{{sin}\theta} \\ $$$$=\frac{{ab}}{{sin}\mathrm{2}\theta} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Oct/18

3)A(a,0)  B(0,b)  P(acosθ,bsinθ)  area of triangle formula  (1/2)∣{x_1 (y_2 −y_3 )+x_2 (y_3 −y_1 )+x_3 (y_1 −y_2 )}∣  =(1/2)∣{a(b−bsinθ)+0(bsinθ−0)+acosθ(0−b)}∣  =(1/2)∣{ab−absinθ−abcosθ}∣

$$\left.\mathrm{3}\right){A}\left({a},\mathrm{0}\right)\:\:{B}\left(\mathrm{0},{b}\right)\:\:{P}\left({acos}\theta,{bsin}\theta\right) \\ $$$${area}\:{of}\:{triangle}\:{formula} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mid\left\{{x}_{\mathrm{1}} \left({y}_{\mathrm{2}} −{y}_{\mathrm{3}} \right)+{x}_{\mathrm{2}} \left({y}_{\mathrm{3}} −{y}_{\mathrm{1}} \right)+{x}_{\mathrm{3}} \left({y}_{\mathrm{1}} −{y}_{\mathrm{2}} \right)\right\}\mid \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mid\left\{{a}\left({b}−{bsin}\theta\right)+\mathrm{0}\left({bsin}\theta−\mathrm{0}\right)+{acos}\theta\left(\mathrm{0}−{b}\right)\right\}\mid \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mid\left\{{ab}−{absin}\theta−{abcos}\theta\right\}\mid \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Oct/18

d)area of APB=(1/2)ab(cosθ+sinθ−1)  already proved  S=((ab)/2)(cosθ+sinθ−1)  (dS/dθ)=((ab)/2)(−sinθ+cosθ)    for max/min (dS/dθ)=0=((ab)/2)(−sinθ+cosθ)  sinθ=cosθ   so  tanθ=1=tan(π/4)    θ=(π/4)  (d^2 S/dθ^2 )=((ab)/2)(−sinθ−cosθ)=−((ab)/2)(sinθ+cosθ)  in the interval   0<θ<(π/2)    sinθ+cosθ=+ve   so(d^2 θ/dθ^2 )=−ve   now point A=(a,0)   B=(0,b)  slope of  AB m_1 =((b−0)/(0−a))=−(b/a)  tangent at p is (already proved)  ((xcosθ)/a)+((ysinθ)/b)=1  at θ=(π/4)  (x/(a(√2)))+(y/(b(√2)))=1    (y/(b(√2)))=1−(x/(a(√2)))  y=b(√2) −(b/a)x     slope is  m_2 =−(b/a)  so m_1 =m_2 =((−b)/a)   that  means AB is parallel  to tangent at p atθ=(π/4)  pls check...

$$\left.{d}\right){area}\:{of}\:{APB}=\frac{\mathrm{1}}{\mathrm{2}}{ab}\left({cos}\theta+{sin}\theta−\mathrm{1}\right) \\ $$$${already}\:{proved} \\ $$$${S}=\frac{{ab}}{\mathrm{2}}\left({cos}\theta+{sin}\theta−\mathrm{1}\right) \\ $$$$\frac{{dS}}{{d}\theta}=\frac{{ab}}{\mathrm{2}}\left(−{sin}\theta+{cos}\theta\right) \\ $$$$ \\ $$$${for}\:{max}/{min}\:\frac{{dS}}{{d}\theta}=\mathrm{0}=\frac{{ab}}{\mathrm{2}}\left(−{sin}\theta+{cos}\theta\right) \\ $$$${sin}\theta={cos}\theta\:\:\:{so}\:\:{tan}\theta=\mathrm{1}={tan}\frac{\pi}{\mathrm{4}}\:\:\:\:\theta=\frac{\pi}{\mathrm{4}} \\ $$$$\frac{{d}^{\mathrm{2}} {S}}{{d}\theta^{\mathrm{2}} }=\frac{{ab}}{\mathrm{2}}\left(−{sin}\theta−{cos}\theta\right)=−\frac{{ab}}{\mathrm{2}}\left({sin}\theta+{cos}\theta\right) \\ $$$${in}\:{the}\:{interval}\:\:\:\mathrm{0}<\theta<\frac{\pi}{\mathrm{2}}\:\: \\ $$$${sin}\theta+{cos}\theta=+{ve}\:\:\:{so}\frac{{d}^{\mathrm{2}} \theta}{{d}\theta^{\mathrm{2}} }=−{ve}\: \\ $$$${now}\:{point}\:{A}=\left({a},\mathrm{0}\right)\:\:\:{B}=\left(\mathrm{0},{b}\right) \\ $$$${slope}\:{of}\:\:{AB}\:{m}_{\mathrm{1}} =\frac{{b}−\mathrm{0}}{\mathrm{0}−{a}}=−\frac{{b}}{{a}} \\ $$$${tangent}\:{at}\:{p}\:{is}\:\left({already}\:{proved}\right) \\ $$$$\frac{{xcos}\theta}{{a}}+\frac{{ysin}\theta}{{b}}=\mathrm{1}\:\:{at}\:\theta=\frac{\pi}{\mathrm{4}} \\ $$$$\frac{{x}}{{a}\sqrt{\mathrm{2}}}+\frac{{y}}{{b}\sqrt{\mathrm{2}}}=\mathrm{1}\:\:\:\:\frac{{y}}{{b}\sqrt{\mathrm{2}}}=\mathrm{1}−\frac{{x}}{{a}\sqrt{\mathrm{2}}} \\ $$$${y}={b}\sqrt{\mathrm{2}}\:−\frac{{b}}{{a}}{x}\:\:\: \\ $$$${slope}\:{is}\:\:{m}_{\mathrm{2}} =−\frac{{b}}{{a}} \\ $$$${so}\:{m}_{\mathrm{1}} ={m}_{\mathrm{2}} =\frac{−{b}}{{a}}\:\:\:{that}\:\:{means}\:{AB}\:{is}\:{parallel} \\ $$$${to}\:{tangent}\:{at}\:{p}\:{at}\theta=\frac{\pi}{\mathrm{4}} \\ $$$${pls}\:{check}... \\ $$

Commented by peter frank last updated on 19/Oct/18

the answer given is (1/2)abcosec𝛉

$$\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{ans}}\mathrm{w}\boldsymbol{\mathrm{er}}\:\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{is}}\:\frac{\mathrm{1}}{\mathrm{2}}\boldsymbol{\mathrm{abcosec}\theta} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com