Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 45673 by ajfour last updated on 15/Oct/18

Commented by ajfour last updated on 15/Oct/18

Assuming no friction anywhere,  find N_1 , N_2  .

$${Assuming}\:{no}\:{friction}\:{anywhere}, \\ $$$${find}\:{N}_{\mathrm{1}} ,\:{N}_{\mathrm{2}} \:. \\ $$

Answered by MrW3 last updated on 15/Oct/18

tan α=((R−r)/s)=((4−2)/(7.5))=(4/(15))  ⇒α=tan^(−1) ((R−r)/s)=tan^(−1) (4/(15))=14.93°  l=(√((R−r)^2 +s^2 ))=((√(241))/2)  cos β_1 =((l^2 +(R+a)^2 −(r+a)^2 )/(2l(R+a)))  cos β_1 =(((R−r)^2 +s^2 +(R+r+2a)(R−r))/(2l(R+a)))  cos β_1 =((2(R−r)(R+a)+s^2 )/(2l(R+a)))=((2×2×7+7.5^2 )/(2×((√(241))/2)×7))=((337)/(28(√(241))))  ⇒β_1 =cos^(−1) ((s^2 +2(R−r)(R+a))/(2l(R+a)))=39.17°    cos β_2 =((l^2 +(r+a)^2 −(R+a)^2 )/(2l(r+a)))  cos β_2 =((l^2 −(R+r+2a)(R−r))/(2l(r+a)))  ⇒cos β_2 =((s^2 −2(R−r)(r+a))/(2l(r+a)))=((7.5^2 −2×2×5)/(2×((√(241))/2)×5))=((145)/(20(√(241))))  ⇒β_2 =cos^(−1) ((s^2 −2(R−r)(r+a))/(2l(r+a)))=62.16°    N_1 =((cos (β_2 +α))/(sin (β_1 +β_2 )))×mg  ⇒N_1 =((cos (62.16+14.93))/(sin (39.17+62.16)))×100=22.8 N    N_2 =((cos (β_1 −α))/(sin (β_1 +β_2 )))×mg  ⇒N_2 =((cos (39.17−14.93))/(sin (39.17+62.16)))×100=93.0 N

$$\mathrm{tan}\:\alpha=\frac{{R}−{r}}{{s}}=\frac{\mathrm{4}−\mathrm{2}}{\mathrm{7}.\mathrm{5}}=\frac{\mathrm{4}}{\mathrm{15}} \\ $$$$\Rightarrow\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{{R}−{r}}{{s}}=\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{4}}{\mathrm{15}}=\mathrm{14}.\mathrm{93}° \\ $$$${l}=\sqrt{\left({R}−{r}\right)^{\mathrm{2}} +{s}^{\mathrm{2}} }=\frac{\sqrt{\mathrm{241}}}{\mathrm{2}} \\ $$$$\mathrm{cos}\:\beta_{\mathrm{1}} =\frac{{l}^{\mathrm{2}} +\left({R}+{a}\right)^{\mathrm{2}} −\left({r}+{a}\right)^{\mathrm{2}} }{\mathrm{2}{l}\left({R}+{a}\right)} \\ $$$$\mathrm{cos}\:\beta_{\mathrm{1}} =\frac{\left({R}−{r}\right)^{\mathrm{2}} +{s}^{\mathrm{2}} +\left({R}+{r}+\mathrm{2}{a}\right)\left({R}−{r}\right)}{\mathrm{2}{l}\left({R}+{a}\right)} \\ $$$$\mathrm{cos}\:\beta_{\mathrm{1}} =\frac{\mathrm{2}\left({R}−{r}\right)\left({R}+{a}\right)+{s}^{\mathrm{2}} }{\mathrm{2}{l}\left({R}+{a}\right)}=\frac{\mathrm{2}×\mathrm{2}×\mathrm{7}+\mathrm{7}.\mathrm{5}^{\mathrm{2}} }{\mathrm{2}×\frac{\sqrt{\mathrm{241}}}{\mathrm{2}}×\mathrm{7}}=\frac{\mathrm{337}}{\mathrm{28}\sqrt{\mathrm{241}}} \\ $$$$\Rightarrow\beta_{\mathrm{1}} =\mathrm{cos}^{−\mathrm{1}} \frac{{s}^{\mathrm{2}} +\mathrm{2}\left({R}−{r}\right)\left({R}+{a}\right)}{\mathrm{2}{l}\left({R}+{a}\right)}=\mathrm{39}.\mathrm{17}° \\ $$$$ \\ $$$$\mathrm{cos}\:\beta_{\mathrm{2}} =\frac{{l}^{\mathrm{2}} +\left({r}+{a}\right)^{\mathrm{2}} −\left({R}+{a}\right)^{\mathrm{2}} }{\mathrm{2}{l}\left({r}+{a}\right)} \\ $$$$\mathrm{cos}\:\beta_{\mathrm{2}} =\frac{{l}^{\mathrm{2}} −\left({R}+{r}+\mathrm{2}{a}\right)\left({R}−{r}\right)}{\mathrm{2}{l}\left({r}+{a}\right)} \\ $$$$\Rightarrow\mathrm{cos}\:\beta_{\mathrm{2}} =\frac{{s}^{\mathrm{2}} −\mathrm{2}\left({R}−{r}\right)\left({r}+{a}\right)}{\mathrm{2}{l}\left({r}+{a}\right)}=\frac{\mathrm{7}.\mathrm{5}^{\mathrm{2}} −\mathrm{2}×\mathrm{2}×\mathrm{5}}{\mathrm{2}×\frac{\sqrt{\mathrm{241}}}{\mathrm{2}}×\mathrm{5}}=\frac{\mathrm{145}}{\mathrm{20}\sqrt{\mathrm{241}}} \\ $$$$\Rightarrow\beta_{\mathrm{2}} =\mathrm{cos}^{−\mathrm{1}} \frac{{s}^{\mathrm{2}} −\mathrm{2}\left({R}−{r}\right)\left({r}+{a}\right)}{\mathrm{2}{l}\left({r}+{a}\right)}=\mathrm{62}.\mathrm{16}° \\ $$$$ \\ $$$${N}_{\mathrm{1}} =\frac{\mathrm{cos}\:\left(\beta_{\mathrm{2}} +\alpha\right)}{\mathrm{sin}\:\left(\beta_{\mathrm{1}} +\beta_{\mathrm{2}} \right)}×{mg} \\ $$$$\Rightarrow{N}_{\mathrm{1}} =\frac{\mathrm{cos}\:\left(\mathrm{62}.\mathrm{16}+\mathrm{14}.\mathrm{93}\right)}{\mathrm{sin}\:\left(\mathrm{39}.\mathrm{17}+\mathrm{62}.\mathrm{16}\right)}×\mathrm{100}=\mathrm{22}.\mathrm{8}\:{N} \\ $$$$ \\ $$$${N}_{\mathrm{2}} =\frac{\mathrm{cos}\:\left(\beta_{\mathrm{1}} −\alpha\right)}{\mathrm{sin}\:\left(\beta_{\mathrm{1}} +\beta_{\mathrm{2}} \right)}×{mg} \\ $$$$\Rightarrow{N}_{\mathrm{2}} =\frac{\mathrm{cos}\:\left(\mathrm{39}.\mathrm{17}−\mathrm{14}.\mathrm{93}\right)}{\mathrm{sin}\:\left(\mathrm{39}.\mathrm{17}+\mathrm{62}.\mathrm{16}\right)}×\mathrm{100}=\mathrm{93}.\mathrm{0}\:{N} \\ $$

Commented by MrW3 last updated on 15/Oct/18

Commented by ajfour last updated on 15/Oct/18

Yes Sir, what to say, i am spellbound;  excellent solution, and no other  better way out!

$${Yes}\:{Sir},\:{what}\:{to}\:{say},\:{i}\:{am}\:{spellbound}; \\ $$$${excellent}\:{solution},\:{and}\:{no}\:{other} \\ $$$${better}\:{way}\:{out}! \\ $$

Commented by behi83417@gmail.com last updated on 15/Oct/18

N_1 .cos(β_1 −α)−N_2 .cos(β_2 +α)=0  N_1 .sin(β_1 −α)+N_2 .sin(β_2 +α)=mg  tgα=(2/(7.5))⇒α=14.93^•   cosβ_1 =((((√(7.5^2 +2^2 )))^2 +7^2 −5^2 )/(2×7.76×7))⇒β_1 =39.18^•   cosβ_2 =((7.76^2 +5^2 −7^2 )/(2×7.76×5))⇒β_2 =62.18^•   β_1 −α=24.25,β_2 +α=77.11  ⇒ { ((N_1 ×0.91−N_2 ×0.22=0)),((N_1 ×0.41+N_2 ×0.97=100)) :}  ⇒N_1 ×0.41+((0.91)/(0.22))×N_1 ×0.97=100  N_1 =((100×0.22)/(0.91×0.97+0.41×0.22))=22.61(N)  N_2 =((0.91)/(0.22))×22.61=93.52(N).

$${N}_{\mathrm{1}} .{cos}\left(\beta_{\mathrm{1}} −\alpha\right)−{N}_{\mathrm{2}} .{cos}\left(\beta_{\mathrm{2}} +\alpha\right)=\mathrm{0} \\ $$$${N}_{\mathrm{1}} .{sin}\left(\beta_{\mathrm{1}} −\alpha\right)+{N}_{\mathrm{2}} .{sin}\left(\beta_{\mathrm{2}} +\alpha\right)={mg} \\ $$$${tg}\alpha=\frac{\mathrm{2}}{\mathrm{7}.\mathrm{5}}\Rightarrow\alpha=\mathrm{14}.\mathrm{93}^{\bullet} \\ $$$${cos}\beta_{\mathrm{1}} =\frac{\left(\sqrt{\mathrm{7}.\mathrm{5}^{\mathrm{2}} +\mathrm{2}^{\mathrm{2}} }\right)^{\mathrm{2}} +\mathrm{7}^{\mathrm{2}} −\mathrm{5}^{\mathrm{2}} }{\mathrm{2}×\mathrm{7}.\mathrm{76}×\mathrm{7}}\Rightarrow\beta_{\mathrm{1}} =\mathrm{39}.\mathrm{18}^{\bullet} \\ $$$${cos}\beta_{\mathrm{2}} =\frac{\mathrm{7}.\mathrm{76}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} −\mathrm{7}^{\mathrm{2}} }{\mathrm{2}×\mathrm{7}.\mathrm{76}×\mathrm{5}}\Rightarrow\beta_{\mathrm{2}} =\mathrm{62}.\mathrm{18}^{\bullet} \\ $$$$\beta_{\mathrm{1}} −\alpha=\mathrm{24}.\mathrm{25},\beta_{\mathrm{2}} +\alpha=\mathrm{77}.\mathrm{11} \\ $$$$\Rightarrow\begin{cases}{{N}_{\mathrm{1}} ×\mathrm{0}.\mathrm{91}−{N}_{\mathrm{2}} ×\mathrm{0}.\mathrm{22}=\mathrm{0}}\\{{N}_{\mathrm{1}} ×\mathrm{0}.\mathrm{41}+{N}_{\mathrm{2}} ×\mathrm{0}.\mathrm{97}=\mathrm{100}}\end{cases} \\ $$$$\Rightarrow{N}_{\mathrm{1}} ×\mathrm{0}.\mathrm{41}+\frac{\mathrm{0}.\mathrm{91}}{\mathrm{0}.\mathrm{22}}×{N}_{\mathrm{1}} ×\mathrm{0}.\mathrm{97}=\mathrm{100} \\ $$$${N}_{\mathrm{1}} =\frac{\mathrm{100}×\mathrm{0}.\mathrm{22}}{\mathrm{0}.\mathrm{91}×\mathrm{0}.\mathrm{97}+\mathrm{0}.\mathrm{41}×\mathrm{0}.\mathrm{22}}=\mathrm{22}.\mathrm{61}\left({N}\right) \\ $$$${N}_{\mathrm{2}} =\frac{\mathrm{0}.\mathrm{91}}{\mathrm{0}.\mathrm{22}}×\mathrm{22}.\mathrm{61}=\mathrm{93}.\mathrm{52}\left({N}\right). \\ $$

Commented by MrW3 last updated on 15/Oct/18

thank you sir!

$${thank}\:{you}\:{sir}! \\ $$

Commented by behi83417@gmail.com last updated on 16/Oct/18

thank you so much dear master.  now it is corrected.

$${thank}\:{you}\:{so}\:{much}\:{dear}\:{master}. \\ $$$${now}\:{it}\:{is}\:{corrected}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com