Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 45688 by  last updated on 15/Oct/18

∫(1/(sinxcos^2 x))dx=?

$$\int\frac{\mathrm{1}}{{sinxcos}^{\mathrm{2}} {x}}{dx}=? \\ $$

Commented by maxmathsup by imad last updated on 15/Oct/18

let I =∫    (dx/(sinx cos^2 x))dx  we have I = ∫ ((1+tan^2 x)/(sinx))dx  changement tan((x/2))=t  give I = ∫ ((1+(((2t)/(1−t^2 )))^2 )/((2t)/(1+t^2 )))  ((2dt)/(1+t^2 )) = ∫    (((1−t^2 )^2  +4t^2 )/(t(1−t^2 )^2 ))dt  =∫  (dt/t) + ∫  ((4t^2 )/(t(1−t^2 )^2 ))dt =ln∣t∣ +∫   ((4t)/((1−t^2 )^2 ))dt =ln∣t∣+(2/(1−t^2 )) +c  =ln∣tan((x/2))∣ +(2/(1−tan^2 ((x/2)))) +c

$${let}\:{I}\:=\int\:\:\:\:\frac{{dx}}{{sinx}\:{cos}^{\mathrm{2}} {x}}{dx}\:\:{we}\:{have}\:{I}\:=\:\int\:\frac{\mathrm{1}+{tan}^{\mathrm{2}} {x}}{{sinx}}{dx}\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t} \\ $$$${give}\:{I}\:=\:\int\:\frac{\mathrm{1}+\left(\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }\right)^{\mathrm{2}} }{\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }}\:\:\frac{\mathrm{2}{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\:\int\:\:\:\:\frac{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} \:+\mathrm{4}{t}^{\mathrm{2}} }{{t}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt} \\ $$$$=\int\:\:\frac{{dt}}{{t}}\:+\:\int\:\:\frac{\mathrm{4}{t}^{\mathrm{2}} }{{t}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:={ln}\mid{t}\mid\:+\int\:\:\:\frac{\mathrm{4}{t}}{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{dt}\:={ln}\mid{t}\mid+\frac{\mathrm{2}}{\mathrm{1}−{t}^{\mathrm{2}} }\:+{c} \\ $$$$={ln}\mid{tan}\left(\frac{{x}}{\mathrm{2}}\right)\mid\:+\frac{\mathrm{2}}{\mathrm{1}−{tan}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}\:+{c} \\ $$$$ \\ $$

Commented by  last updated on 16/Oct/18

Thanku sir

$${Thanku}\:{sir} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 15/Oct/18

∫((sinx)/((1−cos^2 x)cos^2 x))dx  t=cosx   dt=−sinxdx  ∫((−dt)/(t^2 (1−t^2 )))  ∫(((1−t^2 )−t^2 )/(t^2 (1−t^2 )))dt  ∫(dt/t^2 )−∫(dt/(1−t^2 ))  ∫(dt/t^2 )−(1/2)∫((1+t+1−t)/((1+t)(1−t)))dt  ∫t^(−2) dt−(1/2)[∫(dt/(1−t))+∫(dt/(1+t))]  ∫t^(−2) dt+(1/2)∫(dt/(t−1))−(1/2)∫(dt/(t+1))  (t^(−2+1) /(−2+1))+(1/2)ln(t−1)−(1/2)ln(t+1)+c  =((−1)/t)+(1/2)[ln(((t−1)/(t+1)))]+c  =((−1)/(cosx))+(1/2)ln(((cosx−1)/(cosx+1)))+c

$$\int\frac{{sinx}}{\left(\mathrm{1}−{cos}^{\mathrm{2}} {x}\right){cos}^{\mathrm{2}} {x}}{dx} \\ $$$${t}={cosx}\:\:\:{dt}=−{sinxdx} \\ $$$$\int\frac{−{dt}}{{t}^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)} \\ $$$$\int\frac{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)−{t}^{\mathrm{2}} }{{t}^{\mathrm{2}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{dt} \\ $$$$\int\frac{{dt}}{{t}^{\mathrm{2}} }−\int\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$\int\frac{{dt}}{{t}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{1}+{t}+\mathrm{1}−{t}}{\left(\mathrm{1}+{t}\right)\left(\mathrm{1}−{t}\right)}{dt} \\ $$$$\int{t}^{−\mathrm{2}} {dt}−\frac{\mathrm{1}}{\mathrm{2}}\left[\int\frac{{dt}}{\mathrm{1}−{t}}+\int\frac{{dt}}{\mathrm{1}+{t}}\right] \\ $$$$\int{t}^{−\mathrm{2}} {dt}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}+\mathrm{1}} \\ $$$$\frac{{t}^{−\mathrm{2}+\mathrm{1}} }{−\mathrm{2}+\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({t}−\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({t}+\mathrm{1}\right)+{c} \\ $$$$=\frac{−\mathrm{1}}{{t}}+\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left(\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\right)\right]+{c} \\ $$$$=\frac{−\mathrm{1}}{{cosx}}+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{{cosx}−\mathrm{1}}{{cosx}+\mathrm{1}}\right)+{c} \\ $$$$ \\ $$

Commented by  last updated on 16/Oct/18

Thanku sir

$${Thanku}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com