Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45706 by Meritguide1234 last updated on 15/Oct/18

Answered by tanmay.chaudhury50@gmail.com last updated on 17/Oct/18

trying to solve...  ∫(((1+x^4 ))/((1−x^4 )(√(1+x^4 )) ))dx  ∫((1+x^4 )/(x^2 ((1/x^2 )−x^2 )×x(√((1/x^2 )+x^2 )) ))dx  ∫(((1/x^3 )+x)/(((1/x^2 )−x^2 )×{((1/x^2 )+x^2 )^2 }^(1/4) ))dx  ∫((((1/x^3 )+x)dx)/(((1/x^2 )−x^2 )×{((1/x^2 )−x^2 )^2 +4}^(1/4) ))  t=(1/x^2 )−x^2     (dt/dx)=((−2)/x^3 )−2x    (dt/(−2))=((1/x^3 )+x)dx  ∫(dt/(−2×t×(t^2 +4)^(1/4) ))  ((−1)/2)∫((tdt)/(t^2 ×(t^2 +4)^(1/4) ))  y^4 =t^2 +4    4y^3 ×(dy/dt)=2t  ((−1)/2)∫((2y^3 dy)/((y^4 −4)×y))  =−1∫((y^2 dy)/((y^2 +1)(y^2 −1)))  =((−1)/2)∫((y^2 +1+y^2 −1)/((y^2 +1)(y^2 −1)))dy  ((−1)/2)[∫(dy/(y^2 −1))+∫(dy/(y^2 +1))]  =((−1)/2)[{(1/2)∫(((y+1)−(y−1})/((y+1)(y−1)))+∫(dy/(y^2 +1))]  ((−1)/2)[{(1/2)×∫(dy/(y−1))−(1/2)∫(dy/(y+1))+∫(dy/(y^2 +1)) dy]  =((−1)/2)[(1/2)ln(((y−1)/(y+1)))+tan^(−1) y]  =((−1)/2)[(1/2)ln{(((t^2 +4)^(1/4) −1)/((t^2 +4)^(1/4) +1))}+tan^(−1) (t^2 +4)^(1/4) ]+c  =((−1)/2)[(1/2)ln∣(({((1/x^2 )−x^2 )^2 +4}^(1/4) −1)/({((1/x^2 )−x^2 )^2 +4}^(1/4) +2))∣+tan^(−1) {((1/x^2 )−x)^2 +4}^(1/4) +c

tryingtosolve...(1+x4)(1x4)1+x4dx1+x4x2(1x2x2)×x1x2+x2dx1x3+x(1x2x2)×{(1x2+x2)2}14dx(1x3+x)dx(1x2x2)×{(1x2x2)2+4}14t=1x2x2dtdx=2x32xdt2=(1x3+x)dxdt2×t×(t2+4)1412tdtt2×(t2+4)14y4=t2+44y3×dydt=2t122y3dy(y44)×y=1y2dy(y2+1)(y21)=12y2+1+y21(y2+1)(y21)dy12[dyy21+dyy2+1]=12[{12(y+1)(y1}(y+1)(y1)+dyy2+1]12[{12×dyy112dyy+1+dyy2+1dy]=12[12ln(y1y+1)+tan1y]=12[12ln{(t2+4)141(t2+4)14+1}+tan1(t2+4)14]+c=12[12ln{(1x2x2)2+4}141{(1x2x2)2+4}14+2+tan1{(1x2x)2+4}14+c

Commented by Meritguide1234 last updated on 18/Oct/18

nice

nice

Commented by tanmay.chaudhury50@gmail.com last updated on 18/Oct/18

thank you sir...

thankyousir...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com