Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 45720 by Tawa1 last updated on 15/Oct/18

ššŗ_(r = 1) ^n   (r + 1)^3

āˆ‘nr=1(r+1)3

Commented by math khazana by abdo last updated on 15/Oct/18

=Ī£_(k=2) ^(n+1)  k^3 =(((n+1)^2 (n+2)^2 )/4)āˆ’1 .

=āˆ‘k=2n+1k3=(n+1)2(n+2)24āˆ’1.

Commented by Tawa1 last updated on 15/Oct/18

How sir ??.  please explain,  God bless you sir

Howsir??.pleaseexplain,Godblessyousir

Commented by math khazana by abdo last updated on 16/Oct/18

changement ofi ndice r+1=k give  Ī£_(r=1) ^n (r+1)^3 =Ī£_(k=2) ^(n+1)  k^3  but we have proved that  Ī£_(k=1) ^n  k^3 =((n^2 (n+1)^2 )/4) ā‡’Ī£_(k=2) ^(n+1) k^3   =Ī£_(k=1) ^(n+1) k^3 āˆ’1 =(((n+1)^2 (n+2)^2 )/4) āˆ’1 .

changementofindicer+1=kgiveāˆ‘r=1n(r+1)3=āˆ‘k=2n+1k3butwehaveprovedthatāˆ‘k=1nk3=n2(n+1)24ā‡’āˆ‘k=2n+1k3=āˆ‘k=1n+1k3āˆ’1=(n+1)2(n+2)24āˆ’1.

Commented by Tawa1 last updated on 16/Oct/18

God bless you sir

Godblessyousir

Commented by maxmathsup by imad last updated on 16/Oct/18

you are welcome sir.

youarewelcomesir.

Answered by tanmay.chaudhury50@gmail.com last updated on 16/Oct/18

T_r =(r+1)^3 =r^3 +3.r^2 .1+3.r.1^2 +1^3   T_r =r^3 +3r^2 +3r+1  T_1 =1^3 +3Ɨ1^2 +3Ɨ1+1  T_2 =2^3 +3Ɨ2^2 +3Ɨ2+1  T_3 =3^3 +3Ɨ3^2 +3Ɨ3+1  T_4 =4^3 +3Ɨ4^2 +3Ɨ4+1  ...  ...  T_n =n^3 +3Ɨn^2 +3Ɨn+1  add them...  S_n =(1^3 +2^3 +3^3 +...+n^3 )+3(1^2 +2^2 +3^2 ...+n^2 )+          3(1+2+3+...+n)+(1+1+1...upto n times)  S_n ={((n(n+1))/2)}^2 +3Ɨ((n(n+1)(2n+1))/6)+3Ɨ((n(n+1))/2)+     nƗ1  ans

Tr=(r+1)3=r3+3.r2.1+3.r.12+13Tr=r3+3r2+3r+1T1=13+3Ɨ12+3Ɨ1+1T2=23+3Ɨ22+3Ɨ2+1T3=33+3Ɨ32+3Ɨ3+1T4=43+3Ɨ42+3Ɨ4+1......Tn=n3+3Ɨn2+3Ɨn+1addthem...Sn=(13+23+33+...+n3)+3(12+22+32...+n2)+3(1+2+3+...+n)+(1+1+1...uptontimes)Sn={n(n+1)2}2+3Ɨn(n+1)(2n+1)6+3Ɨn(n+1)2+nƗ1ans

Commented by Tawa1 last updated on 16/Oct/18

God bless you sir

Godblessyousir

Answered by MrW3 last updated on 16/Oct/18

generally for 1ā‰¤pā‰¤n,  Ī£_(r=1) ^n (r+p)^3 =Ī£_(k=p+1) ^(p+n) k^3 =Ī£_(k=1) ^(p+n) k^3 āˆ’Ī£_(k=1) ^p k^3   =(((p+n)^2 (p+n+1)^2 )/4)āˆ’((p^2 (p+1)^2 )/4)

generallyfor1ā©½pā©½n,āˆ‘nr=1(r+p)3=āˆ‘p+nk=p+1k3=āˆ‘p+nk=1k3āˆ’āˆ‘pk=1k3=(p+n)2(p+n+1)24āˆ’p2(p+1)24

Commented by Tawa1 last updated on 16/Oct/18

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com