Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 4575 by FilupSmith last updated on 08/Feb/16

∫_a ^( ∞) (1/x)dx=∞    ∫_a ^( ∞) ⌊(1/x)⌋dx=S  a>0    Is S finite? Can you solve for S?

$$\int_{{a}} ^{\:\infty} \frac{\mathrm{1}}{{x}}{dx}=\infty \\ $$ $$ \\ $$ $$\int_{{a}} ^{\:\infty} \lfloor\frac{\mathrm{1}}{{x}}\rfloor{dx}={S} \\ $$ $${a}>\mathrm{0} \\ $$ $$ \\ $$ $$\mathrm{Is}\:{S}\:\mathrm{finite}?\:\mathrm{Can}\:\mathrm{you}\:\mathrm{solve}\:\mathrm{for}\:{S}? \\ $$

Commented byYozzii last updated on 08/Feb/16

If 0<a<1 we have  S=∫_a ^∞ ⌊(1/x)⌋dx=∫_a ^1 ⌊(1/x)⌋dx+∫_1 ^∞ ⌊(1/x)⌋dx  For all x>1,⌊(1/x)⌋=0⇒∫_1 ^∞ ⌊(1/x)⌋dx=0.  For 0<a≤x≤1⇒1≤(1/x)≤(1/a)  ∴ lim_(a→0^+ ) (1/a)=+∞⇒1≤⌊(1/x)⌋≤⌊(1/a)⌋∈Z^+   So ⌊(1/x)⌋ takes all integral values from  1 to ⌊(1/a)⌋ but ⌊(1/x)⌋ decreases as x goes  from a to 1. S is finite since the   integral S=∫_a ^1 ⌊(1/x)⌋dx represents the  total area of rectangles of height ⌊(1/x)⌋  and width d=b−c such that for a given  interval a≤b≤x≤c≤1, ⌊(1/x)⌋ is constant.  For example if a=0.5⇒S=∫_(0.5) ^1 ⌊(1/x)⌋dx.  ∴ For 0.5≤x≤1⇒1≤(1/x)≤2  ⇒⌊(1/x)⌋=1. lim_(x→0.5^− ) ⌊(1/x)⌋=2 but lim_(x→0.5^+ ) ⌊(1/x)⌋=1  and ⌊(1/x)⌋=1 for 0.5<x≤1 since 1≤(1/x)<2.  Therefore, ⌊(1/x)⌋ is undefined at x=0.5  but graphically ⌊(1/x)⌋=1 for 0.5<x≤1.  ∴ S=(interval width)(height)=(1−0.5)×1=0.5.    In another example let a=0.0987.  ⇒ for 0.0987≤x≤1⇒1≤⌊(1/x)⌋≤10

$${If}\:\mathrm{0}<{a}<\mathrm{1}\:{we}\:{have} \\ $$ $${S}=\int_{{a}} ^{\infty} \lfloor\frac{\mathrm{1}}{{x}}\rfloor{dx}=\int_{{a}} ^{\mathrm{1}} \lfloor\frac{\mathrm{1}}{{x}}\rfloor{dx}+\int_{\mathrm{1}} ^{\infty} \lfloor\frac{\mathrm{1}}{{x}}\rfloor{dx} \\ $$ $${For}\:{all}\:{x}>\mathrm{1},\lfloor\frac{\mathrm{1}}{{x}}\rfloor=\mathrm{0}\Rightarrow\int_{\mathrm{1}} ^{\infty} \lfloor\frac{\mathrm{1}}{{x}}\rfloor{dx}=\mathrm{0}. \\ $$ $${For}\:\mathrm{0}<{a}\leqslant{x}\leqslant\mathrm{1}\Rightarrow\mathrm{1}\leqslant\frac{\mathrm{1}}{{x}}\leqslant\frac{\mathrm{1}}{{a}} \\ $$ $$\therefore\:\underset{{a}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{1}}{{a}}=+\infty\Rightarrow\mathrm{1}\leqslant\lfloor\frac{\mathrm{1}}{{x}}\rfloor\leqslant\lfloor\frac{\mathrm{1}}{{a}}\rfloor\in\mathbb{Z}^{+} \\ $$ $${So}\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor\:{takes}\:{all}\:{integral}\:{values}\:{from} \\ $$ $$\mathrm{1}\:{to}\:\lfloor\frac{\mathrm{1}}{{a}}\rfloor\:{but}\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor\:{decreases}\:{as}\:{x}\:{goes} \\ $$ $${from}\:{a}\:{to}\:\mathrm{1}.\:{S}\:{is}\:{finite}\:{since}\:{the}\: \\ $$ $${integral}\:{S}=\int_{{a}} ^{\mathrm{1}} \lfloor\frac{\mathrm{1}}{{x}}\rfloor{dx}\:{represents}\:{the} \\ $$ $${total}\:{area}\:{of}\:{rectangles}\:{of}\:{height}\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor \\ $$ $${and}\:{width}\:{d}={b}−{c}\:{such}\:{that}\:{for}\:{a}\:{given} \\ $$ $${interval}\:{a}\leqslant{b}\leqslant{x}\leqslant{c}\leqslant\mathrm{1},\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor\:{is}\:{constant}. \\ $$ $${For}\:{example}\:{if}\:{a}=\mathrm{0}.\mathrm{5}\Rightarrow{S}=\int_{\mathrm{0}.\mathrm{5}} ^{\mathrm{1}} \lfloor\frac{\mathrm{1}}{{x}}\rfloor{dx}. \\ $$ $$\therefore\:{For}\:\mathrm{0}.\mathrm{5}\leqslant{x}\leqslant\mathrm{1}\Rightarrow\mathrm{1}\leqslant\frac{\mathrm{1}}{{x}}\leqslant\mathrm{2} \\ $$ $$\Rightarrow\lfloor\frac{\mathrm{1}}{{x}}\rfloor=\mathrm{1}.\:\underset{{x}\rightarrow\mathrm{0}.\mathrm{5}^{−} } {\mathrm{lim}}\lfloor\frac{\mathrm{1}}{{x}}\rfloor=\mathrm{2}\:{but}\:\underset{{x}\rightarrow\mathrm{0}.\mathrm{5}^{+} } {\mathrm{lim}}\lfloor\frac{\mathrm{1}}{{x}}\rfloor=\mathrm{1} \\ $$ $${and}\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor=\mathrm{1}\:{for}\:\mathrm{0}.\mathrm{5}<{x}\leqslant\mathrm{1}\:{since}\:\mathrm{1}\leqslant\frac{\mathrm{1}}{{x}}<\mathrm{2}. \\ $$ $${Therefore},\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor\:{is}\:{undefined}\:{at}\:{x}=\mathrm{0}.\mathrm{5} \\ $$ $${but}\:{graphically}\:\lfloor\frac{\mathrm{1}}{{x}}\rfloor=\mathrm{1}\:{for}\:\mathrm{0}.\mathrm{5}<{x}\leqslant\mathrm{1}. \\ $$ $$\therefore\:{S}=\left({interval}\:{width}\right)\left({height}\right)=\left(\mathrm{1}−\mathrm{0}.\mathrm{5}\right)×\mathrm{1}=\mathrm{0}.\mathrm{5}. \\ $$ $$ \\ $$ $${In}\:{another}\:{example}\:{let}\:{a}=\mathrm{0}.\mathrm{0987}. \\ $$ $$\Rightarrow\:{for}\:\mathrm{0}.\mathrm{0987}\leqslant{x}\leqslant\mathrm{1}\Rightarrow\mathrm{1}\leqslant\lfloor\frac{\mathrm{1}}{{x}}\rfloor\leqslant\mathrm{10} \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$

Commented byYozzii last updated on 08/Feb/16

If a>1⇒ for a≤x<∞⇒0<(1/x)≤(1/a)<1  ⇒⌊(1/x)⌋=0⇒S=∫_a ^∞ 0dx=0.  Generally, S is finite and could be   found if a>0.

$${If}\:{a}>\mathrm{1}\Rightarrow\:{for}\:{a}\leqslant{x}<\infty\Rightarrow\mathrm{0}<\frac{\mathrm{1}}{{x}}\leqslant\frac{\mathrm{1}}{{a}}<\mathrm{1} \\ $$ $$\Rightarrow\lfloor\frac{\mathrm{1}}{{x}}\rfloor=\mathrm{0}\Rightarrow{S}=\int_{{a}} ^{\infty} \mathrm{0}{dx}=\mathrm{0}. \\ $$ $${Generally},\:{S}\:{is}\:{finite}\:{and}\:{could}\:{be}\: \\ $$ $${found}\:{if}\:{a}>\mathrm{0}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com