Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45771 by maxmathsup by imad last updated on 16/Oct/18

find f(x)=∫_0 ^∞  cos(x+t^2 )dtand g(x)=∫_0 ^∞  sin(x+t^2 )dt  2) find the value of f^′ (x) and g^′ (x).

findf(x)=0cos(x+t2)dtandg(x)=0sin(x+t2)dt2)findthevalueoff(x)andg(x).

Answered by maxmathsup by imad last updated on 18/Oct/18

1)we have f(x)−ig(x)=∫_0 ^∞  e^(−i(x+t^2 )) dt = e^(−ix)  ∫_0 ^∞  e^(−it^2 ) dt  =e^(−ix)  ∫_0 ^∞   e^(−((√i)t)^2 ) dt =_(t(√i)=u)  e^(−ix)  ∫_0 ^∞   e^(−u^2 )  (du/(√i))  =e^(−ix)  e^(−i(π/4))  ∫_0 ^∞  e^(−u^2 ) du =((√π)/2) e^(−i(x+(π/4))) =((√π)/2){ cos(x+(π/4))−isin(x+(π/4))} ⇒  f(x)=((√π)/2) cos(x+(π/4)) and g(x)=((√π)/2)sin(x+(π/4)) .

1)wehavef(x)ig(x)=0ei(x+t2)dt=eix0eit2dt=eix0e(it)2dt=ti=ueix0eu2dui=eixeiπ40eu2du=π2ei(x+π4)=π2{cos(x+π4)isin(x+π4)}f(x)=π2cos(x+π4)andg(x)=π2sin(x+π4).

Commented by maxmathsup by imad last updated on 18/Oct/18

2) we have f^′ (x)=−((√π)/2)sin(x+(π/4)) and g^′ (x)=((√π)/2) cos(x+(π/4)).

2)wehavef(x)=π2sin(x+π4)andg(x)=π2cos(x+π4).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com