All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 45785 by Tawa1 last updated on 16/Oct/18
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Oct/18
letcentreofcircleis(α,β)andradiusrsoeqnofcircle(x−α)2+(y−β)2=r2nowaspercondition1)xaxisis[thetangentofcirclesodistancefromcenteto[xsxisistheradius.distancefromcentre(α,β)toxaxisisβ=radiusβ=rsoeqnis(x−α)2+(y−β)2=β22)centrelieson2y=x2β=α3)(14,2)liezoncircleso(14−α)2+(2−β)2=β2(14−2β)2+(2−β)2=β2givenα=2β196−56β+4β2+4−4β+β2=β24β2−60β+200=0β2−15β+50=0(β−5)(β−10)=0β=5α=10eqn(x−10)2+(y−5)2=52whenβ=10α=20eqn(x−20)2+(y−10)2=102
Commented by Tawa1 last updated on 16/Oct/18
Godblessyousir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com