Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45795 by maxmathsup by imad last updated on 16/Oct/18

find ∫ (dx/(cosx sin^2 x))

$${find}\:\int\:\frac{{dx}}{{cosx}\:{sin}^{\mathrm{2}} {x}} \\ $$

Answered by MJS last updated on 17/Oct/18

(1/(cos x sin^2  x))=(1+((cos^2  x)/(sin^2  x)))(1/(cos x)) =  =(1/(cos x))+((cos x)/(sin^2  x))  ∫(dx/(cos x))=∫sec x dx=ln ∣tan x +sec x∣ =ln ∣((1+sin x)/(cos x))∣  ∫((cos x)/(sin^2  x))dx=       [t=sin x → dx=(dt/(cos x))]  =∫(dt/t^2 )=−(1/t)=−(1/(sin x))  ∫(dx/(cos x sin^2  x))=ln ∣((1+sin x)/(cos x))∣ −(1/(sin x))+C

$$\frac{\mathrm{1}}{\mathrm{cos}\:{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}}=\left(\mathrm{1}+\frac{\mathrm{cos}^{\mathrm{2}} \:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}}\right)\frac{\mathrm{1}}{\mathrm{cos}\:{x}}\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{cos}\:{x}}+\frac{\mathrm{cos}\:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}} \\ $$$$\int\frac{{dx}}{\mathrm{cos}\:{x}}=\int\mathrm{sec}\:{x}\:{dx}=\mathrm{ln}\:\mid\mathrm{tan}\:{x}\:+\mathrm{sec}\:{x}\mid\:=\mathrm{ln}\:\mid\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\mid \\ $$$$\int\frac{\mathrm{cos}\:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{sin}\:{x}\:\rightarrow\:{dx}=\frac{{dt}}{\mathrm{cos}\:{x}}\right] \\ $$$$=\int\frac{{dt}}{{t}^{\mathrm{2}} }=−\frac{\mathrm{1}}{{t}}=−\frac{\mathrm{1}}{\mathrm{sin}\:{x}} \\ $$$$\int\frac{{dx}}{\mathrm{cos}\:{x}\:\mathrm{sin}^{\mathrm{2}} \:{x}}=\mathrm{ln}\:\mid\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\mid\:−\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+{C} \\ $$

Commented by math khazana by abdo last updated on 17/Oct/18

thank you sir MJS.

$${thank}\:{you}\:{sir}\:{MJS}. \\ $$

Commented by MJS last updated on 17/Oct/18

btw  (1/(cos^2  x sin x))=(1+((sin^2  x)/(cos^2  x)))(1/(sin x))=  =(1/(sin x))+((sin x)/(cos^2  x))  ∫(dx/(sin x))=∫csc x dx=−ln ∣cot x +csc x∣ =−ln ∣((1+cos x)/(sin x))∣  ∫((sin x)/(cos^2  x))dx=       [t=cos x → dx=−(dt/(sin x))]  =−∫(dt/t^2 )=(1/t)=(1/(cos x))

$$\mathrm{btw} \\ $$$$\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} \:{x}\:\mathrm{sin}\:{x}}=\left(\mathrm{1}+\frac{\mathrm{sin}^{\mathrm{2}} \:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}}\right)\frac{\mathrm{1}}{\mathrm{sin}\:{x}}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{sin}\:{x}}+\frac{\mathrm{sin}\:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}} \\ $$$$\int\frac{{dx}}{\mathrm{sin}\:{x}}=\int\mathrm{csc}\:{x}\:{dx}=−\mathrm{ln}\:\mid\mathrm{cot}\:{x}\:+\mathrm{csc}\:{x}\mid\:=−\mathrm{ln}\:\mid\frac{\mathrm{1}+\mathrm{cos}\:{x}}{\mathrm{sin}\:{x}}\mid \\ $$$$\int\frac{\mathrm{sin}\:{x}}{\mathrm{cos}^{\mathrm{2}} \:{x}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{cos}\:{x}\:\rightarrow\:{dx}=−\frac{{dt}}{\mathrm{sin}\:{x}}\right] \\ $$$$=−\int\frac{{dt}}{{t}^{\mathrm{2}} }=\frac{\mathrm{1}}{{t}}=\frac{\mathrm{1}}{\mathrm{cos}\:{x}} \\ $$

Commented by MJS last updated on 17/Oct/18

you′re welcome. I just fixed a typo...

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome}.\:\mathrm{I}\:\mathrm{just}\:\mathrm{fixed}\:\mathrm{a}\:\mathrm{typo}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com