Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 45802 by MJS last updated on 17/Oct/18

some practice for the brave...  ∫((cos^2  x sin^2  x)/(cos x +sin x))dx=?  ∫((cos^2  x tan^2  x)/(cos x +tan x))dx=?  ∫((sin^2  x tan^2  x)/(sin x +tan x))dx=?

somepracticeforthebrave...cos2xsin2xcosx+sinxdx=?cos2xtan2xcosx+tanxdx=?sin2xtan2xsinx+tanxdx=?

Commented by maxmathsup by imad last updated on 17/Oct/18

1) changement tan((x/2))=t give     ∫  ((cos^2 x sin^2 x)/(cosx +sinx))dx =∫     (((((1−t^2 )/(1+t^2 )))^2  ((4t^2 )/((1+t^2 )^2 )))/(((1−t^2 )/(1+t^2 ))+((2t)/(1+t^2 )))) ((2dt)/(1+t^2 ))  = 8∫      ((t^2 (1−t^2 )^2 )/((1−t^2 +2t))) dt =8  ∫      ((t^2 (t^4 −2t^2  +1))/(−(t^2 −2t−1)))dt  =−8 ∫    ((t^6 −2t^4  +t^2 )/((t^2 −2t −1)))dt =−8 ∫   ((t^4 (t^2 −2t−1)+2t^5 +t^4 −2t^4 +t^2 )/(t^2 −2t−1))dt  =−8 ∫ t^4 dt −8 ∫ ((2t^5 −t^4  +t^2 )/(t^2 −2t−1))dt  =−(8/5)t^5  −8 ∫  ((2t^3 (t^2 −2t−1)+4t^4 +2t^3 −t^4 +t^2 )/(t^2 −2t−1))dt  =−(8/5)t^5  −16 ∫ t^3 dt −8 ∫  ((3t^4  +2t^3  +t^2 )/(t^2 −2t−1))dt  =−(8/5)t^5 −4 t^4    −8 ∫  ((3t^2 (t^2 −2t−1) +6t^3  +3t^2  +2t^3  +t^2 )/(t^2 −2t−1))dt  =−(8/5)t^5  −4t^4  −24 ∫ t^2 dt −8 ∫  ((8t^3  +4t^2 )/(t^2 −2t−1))dt  =−(8/5)t^5 −4t^4  −8 t^3  −32 ∫   ((2t^3  +t^2 )/(t^2 −2t −1))dt but  ∫   ((2t^3  +t^2 )/(t^2 −2t−1))dt = ∫  ((2t(t^2 −2t−1) +4t^2  +2t +t^2 )/(t^2 −2t−1))dt  = t^2   + ∫ ((5t^2  +2t)/(t^2 −2t−1))dt =t^2  +∫  ((5(t^2 −2t+1)+10t −5 +2t)/(t^2 −2t−1))dt  =t^2  +5t  +∫   ((12t−5)/(t^2 −2t−1))dt also   ∫ ((12t−5)/(t^2 −2t−1))dt = 6  ∫ ((2t−2−(5/6)+2)/(t^2 −2t−1))dt =6ln∣t^2 −2t−1∣ +7 ∫ (dt/((t−1)^2 −2))  =6 ln∣t^2 −2t−1∣ +7 ∫    (dt/((t−3)(t+1)))  =6ln∣t^2 −2t−1∣ +(7/4) ∫ ((1/(t−3)) −(1/(t+1)))dt  =6ln∣t^2 −2t−1∣ +(7/4)ln∣((t−3)/(t+1))∣   with t=tan((x/2))  ....

1)changementtan(x2)=tgivecos2xsin2xcosx+sinxdx=(1t21+t2)24t2(1+t2)21t21+t2+2t1+t22dt1+t2=8t2(1t2)2(1t2+2t)dt=8t2(t42t2+1)(t22t1)dt=8t62t4+t2(t22t1)dt=8t4(t22t1)+2t5+t42t4+t2t22t1dt=8t4dt82t5t4+t2t22t1dt=85t582t3(t22t1)+4t4+2t3t4+t2t22t1dt=85t516t3dt83t4+2t3+t2t22t1dt=85t54t483t2(t22t1)+6t3+3t2+2t3+t2t22t1dt=85t54t424t2dt88t3+4t2t22t1dt=85t54t48t3322t3+t2t22t1dtbut2t3+t2t22t1dt=2t(t22t1)+4t2+2t+t2t22t1dt=t2+5t2+2tt22t1dt=t2+5(t22t+1)+10t5+2tt22t1dt=t2+5t+12t5t22t1dtalso12t5t22t1dt=62t256+2t22t1dt=6lnt22t1+7dt(t1)22=6lnt22t1+7dt(t3)(t+1)=6lnt22t1+74(1t31t+1)dt=6lnt22t1+74lnt3t+1witht=tan(x2)....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com