Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 45896 by Sanjarbek last updated on 18/Oct/18

solve for x  x^4 −4x+1=0

$$\boldsymbol{{solve}}\:\boldsymbol{{for}}\:\boldsymbol{{x}} \\ $$$$\boldsymbol{{x}}^{\mathrm{4}} −\mathrm{4}\boldsymbol{{x}}+\mathrm{1}=\mathrm{0} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 18/Oct/18

Commented by tanmay.chaudhury50@gmail.com last updated on 18/Oct/18

Answered by ajfour last updated on 19/Oct/18

let  x^4 −4x+1=0   ⇔ (x^2 +ax+b)(x^2 −ax+(1/b))=0    ⇔ x^4 +(b+(1/b)−a^2 )x^2 +a((1/b)−b)x+1=0  ⇒  (1/b)+b = a^2   ;   (1/b)−b = −(4/a)  adding:      a^2 −(4/a)= (2/b)     ...(i)  subtracting:   a^2 +(4/a) = 2b    ...(ii)  ⇒    b > 0    multiplying above two eqs.              a^4 −((16)/a^2 ) =4  let  s = a^2  , then         s^3 −4s−16 = 0  ⇒ s=a^2 = (8+(8/3)(√((26)/3)))^(1/3) +(8−(8/3)(√((26)/3)))^(1/3)      a^2 ≈ 3.04275941      a ≈ ±1.74435071      b = (a^2 /2)+(2/a)     with +ve a,  b_1 ≈ 2.66793813    with −ve a,  b_2 ≈ 0.374821282  both sets satisfy eqs. (i) & (ii)    For +ve a & b_1     x^2 +ax+b=0  provides      x=−(a/2)±(√((a^2 /4)−b))       no real roots; while   x^2 −ax+1/b =0   gives      x ≈ −1.49336 , −0.25099   For  −ve a & b_2     x^2 +ax+b = 0   gives      x ≈ 0.25099 , 1.49336    while x^2 −ax+1/b =0  gives     no real roots.  But   (d/dx)(x^4 −4x+1)= 4x^3 −4  ⇒  (dy/dx)=0  only at x=1  so one root is certainly > 1  ⇒ we need to reject the negative  set of roots;  the answer is indeed       x_1 ≈ 0.25099  &  x_2 ≈ 1.49336  .

$${let}\:\:{x}^{\mathrm{4}} −\mathrm{4}{x}+\mathrm{1}=\mathrm{0} \\ $$$$\:\Leftrightarrow\:\left({x}^{\mathrm{2}} +{ax}+{b}\right)\left({x}^{\mathrm{2}} −{ax}+\frac{\mathrm{1}}{{b}}\right)=\mathrm{0} \\ $$$$\:\:\Leftrightarrow\:{x}^{\mathrm{4}} +\left({b}+\frac{\mathrm{1}}{{b}}−{a}^{\mathrm{2}} \right){x}^{\mathrm{2}} +{a}\left(\frac{\mathrm{1}}{{b}}−{b}\right){x}+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\:\:\frac{\mathrm{1}}{{b}}+{b}\:=\:{a}^{\mathrm{2}} \:\:;\:\:\:\frac{\mathrm{1}}{{b}}−{b}\:=\:−\frac{\mathrm{4}}{{a}} \\ $$$${adding}:\:\:\:\:\:\:{a}^{\mathrm{2}} −\frac{\mathrm{4}}{{a}}=\:\frac{\mathrm{2}}{{b}}\:\:\:\:\:...\left({i}\right) \\ $$$${subtracting}:\:\:\:{a}^{\mathrm{2}} +\frac{\mathrm{4}}{{a}}\:=\:\mathrm{2}{b}\:\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\:\:\:\:{b}\:>\:\mathrm{0}\:\: \\ $$$${multiplying}\:{above}\:{two}\:{eqs}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{a}^{\mathrm{4}} −\frac{\mathrm{16}}{{a}^{\mathrm{2}} }\:=\mathrm{4} \\ $$$${let}\:\:{s}\:=\:{a}^{\mathrm{2}} \:,\:{then} \\ $$$$\:\:\:\:\:\:\:{s}^{\mathrm{3}} −\mathrm{4}{s}−\mathrm{16}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{s}={a}^{\mathrm{2}} =\:\left(\mathrm{8}+\frac{\mathrm{8}}{\mathrm{3}}\sqrt{\frac{\mathrm{26}}{\mathrm{3}}}\right)^{\mathrm{1}/\mathrm{3}} +\left(\mathrm{8}−\frac{\mathrm{8}}{\mathrm{3}}\sqrt{\frac{\mathrm{26}}{\mathrm{3}}}\right)^{\mathrm{1}/\mathrm{3}} \\ $$$$\:\:\:{a}^{\mathrm{2}} \approx\:\mathrm{3}.\mathrm{04275941} \\ $$$$\:\:\:\:{a}\:\approx\:\pm\mathrm{1}.\mathrm{74435071} \\ $$$$\:\:\:\:{b}\:=\:\frac{{a}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{2}}{{a}}\: \\ $$$$\:\:{with}\:+{ve}\:{a},\:\:{b}_{\mathrm{1}} \approx\:\mathrm{2}.\mathrm{66793813} \\ $$$$\:\:{with}\:−{ve}\:{a},\:\:{b}_{\mathrm{2}} \approx\:\mathrm{0}.\mathrm{374821282} \\ $$$${both}\:{sets}\:{satisfy}\:{eqs}.\:\left({i}\right)\:\&\:\left({ii}\right) \\ $$$$\:\:{For}\:+{ve}\:\boldsymbol{{a}}\:\&\:{b}_{\mathrm{1}} \\ $$$$\:\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{ax}}+\boldsymbol{{b}}=\mathrm{0}\:\:{provides} \\ $$$$\:\:\:\:{x}=−\frac{{a}}{\mathrm{2}}\pm\sqrt{\frac{{a}^{\mathrm{2}} }{\mathrm{4}}−{b}} \\ $$$$\:\:\:\:\:{no}\:{real}\:{roots};\:{while} \\ $$$$\:\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{ax}}+\mathrm{1}/\boldsymbol{{b}}\:=\mathrm{0}\:\:\:{gives} \\ $$$$\:\:\:\:{x}\:\approx\:−\mathrm{1}.\mathrm{49336}\:,\:−\mathrm{0}.\mathrm{25099} \\ $$$$\:{For}\:\:−{ve}\:\boldsymbol{{a}}\:\&\:{b}_{\mathrm{2}} \\ $$$$\:\:\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{ax}}+\boldsymbol{{b}}\:=\:\mathrm{0}\:\:\:{gives} \\ $$$$\:\:\:\:{x}\:\approx\:\mathrm{0}.\mathrm{25099}\:,\:\mathrm{1}.\mathrm{49336} \\ $$$$\:\:{while}\:\boldsymbol{{x}}^{\mathrm{2}} −\boldsymbol{{ax}}+\mathrm{1}/\boldsymbol{{b}}\:=\mathrm{0}\:\:{gives} \\ $$$$\:\:\:{no}\:{real}\:{roots}. \\ $$$${But}\:\:\:\frac{{d}}{{dx}}\left({x}^{\mathrm{4}} −\mathrm{4}{x}+\mathrm{1}\right)=\:\mathrm{4}{x}^{\mathrm{3}} −\mathrm{4} \\ $$$$\Rightarrow\:\:\frac{{dy}}{{dx}}=\mathrm{0}\:\:{only}\:{at}\:{x}=\mathrm{1} \\ $$$${so}\:{one}\:{root}\:{is}\:{certainly}\:>\:\mathrm{1} \\ $$$$\Rightarrow\:{we}\:{need}\:{to}\:{reject}\:{the}\:{negative} \\ $$$${set}\:{of}\:{roots};\:\:{the}\:{answer}\:{is}\:{indeed} \\ $$$$\:\:\:\:\:{x}_{\mathrm{1}} \approx\:\mathrm{0}.\mathrm{25099}\:\:\&\:\:{x}_{\mathrm{2}} \approx\:\mathrm{1}.\mathrm{49336}\:\:. \\ $$$$ \\ $$

Commented by peter frank last updated on 18/Oct/18

second line sir clarify plz

$$\mathrm{second}\:\mathrm{line}\:\mathrm{sir}\:\mathrm{clarify}\:\mathrm{plz} \\ $$$$ \\ $$

Commented by ajfour last updated on 18/Oct/18

coeff. of x^3  is 0 and constant  term is 1, and i assumed a degree 4  expression as a product of two  quadratic expressions..

$${coeff}.\:{of}\:{x}^{\mathrm{3}} \:{is}\:\mathrm{0}\:{and}\:{constant} \\ $$$${term}\:{is}\:\mathrm{1},\:{and}\:{i}\:{assumed}\:{a}\:{degree}\:\mathrm{4} \\ $$$${expression}\:{as}\:{a}\:{product}\:{of}\:{two} \\ $$$${quadratic}\:{expressions}.. \\ $$

Commented by peter frank last updated on 20/Oct/18

and third line i dont get it

$$\mathrm{and}\:\mathrm{third}\:\mathrm{line}\:\mathrm{i}\:\mathrm{dont}\:\mathrm{get}\:\mathrm{it} \\ $$

Commented by ajfour last updated on 20/Oct/18

second line expanded..

$${second}\:{line}\:{expanded}.. \\ $$

Commented by peter frank last updated on 20/Oct/18

thanks

$$\mathrm{thanks} \\ $$

Answered by mondodotto@gmail.com last updated on 18/Oct/18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com