Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 45941 by arcana last updated on 19/Oct/18

Find 0<θ<2π with x,y ∈R    x∙sinθ=y∙cosθ

Find0<θ<2πwithx,yR xsinθ=ycosθ

Answered by MJS last updated on 19/Oct/18

for x=0∨y=0 it′s trivial  x≠0∧y≠0 for the following  sin θ =(y/x)cos θ  tan θ =(y/x)  generally θ=zπ+arctan (y/x); z∈Z  but we need θ∈[0, 2π[  −(π/2)<arctan (y/x) <(π/2)  so we have  (y/x)<0 ⇒ θ=π+arctan (y/x)∨θ=2π+arctan (y/x)  (y/x)>0 ⇒ θ=arctan (y/x)∨θ=π+arctan (y/x)

forx=0y=0itstrivial x0y0forthefollowing sinθ=yxcosθ tanθ=yx generallyθ=zπ+arctanyx;zZ butweneedθ[0,2π[ π2<arctanyx<π2 sowehave yx<0θ=π+arctanyxθ=2π+arctanyx yx>0θ=arctanyxθ=π+arctanyx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com