Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 45963 by maxmathsup by imad last updated on 19/Oct/18

find the value of Σ_(n=1) ^∞   (n/((4n^2 −1)^2 )) .

findthevalueofn=1n(4n21)2.

Commented by maxmathsup by imad last updated on 23/Oct/18

let decompose F(n)=(n/((4n^2 −1)^2 )) ⇒F(x)=(n/((2n−1)^2 (2n+1)^2 ))  =(1/8){ (1/((2n−1)^2 )) −(1/((2n+1)^2 ))} ⇒Σ_(n=1) ^∞  (n/((4n^2 −1)^2 ))  =(1/8)Σ_(n=1) ^∞  (1/((2n−1)^2 )) −(1/8) Σ_(n=1) ^∞   (1/((2n+1)^2 )) but  Σ_(n=1) ^∞  (1/n^2 ) =(1/4) Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒Σ_(n=0) ^∞  (1/((2n+1)^2 )) =(3/4) (π^2 /6) =(π^2 /8)  ⇒Σ_(n=1) ^∞  (1/((2n+1)^2 )) =(π^2 /8) −1  and Σ_(n=1) ^∞  (1/((2n−1)^2 )) =_(n=k+1) Σ_(k=0) ^∞   (1/((2k+1)^2 ))  =(π^2 /8) ⇒ S =(1/8){(π^2 /8) +(π^2 /8) −1} =(1/8){(π^2 /4)−1}=(π^2 /(32)) −(1/8) .

letdecomposeF(n)=n(4n21)2F(x)=n(2n1)2(2n+1)2=18{1(2n1)21(2n+1)2}n=1n(4n21)2=18n=11(2n1)218n=11(2n+1)2butn=11n2=14n=11n2+n=01(2n+1)2n=01(2n+1)2=34π26=π28n=11(2n+1)2=π281andn=11(2n1)2=n=k+1k=01(2k+1)2=π28S=18{π28+π281}=18{π241}=π23218.

Answered by Smail last updated on 22/Oct/18

A=Σ_(n=1) ^∞ (n/((4n^2 −1)^2 ))=Σ_(n=1) ^∞ (n/((2n−1)^2 (2n+1)^2 ))  (n/((2n−1)^2 (2n+1)^2 ))=(1/8)((1/((2n−1)^2 )) −(1/((2n+1)^2 ))  A=(1/8)Σ_(n=1) ^∞ (1/((2n−1)^2 ))−(1/8)Σ_(n=1) ^∞ (1/((2n+1)^2 ))  =(1/8)[Σ_(n=1) ^∞ (1/((2n−1)^2 ))+Σ_(n=1) ^∞ (1/((2n)^2 ))−(Σ_(n=1) ^∞ (1/((2n+1)^2 ))+Σ_(n=1) ^∞ (1/((2n)^2 )))]  =(1/8)[Σ_(n=1) ^∞ (1/n^2 )−Σ_(n=2) ^∞ (1/n^2 )]  =(1/8)(1)=(1/8)

A=n=1n(4n21)2=n=1n(2n1)2(2n+1)2n(2n1)2(2n+1)2=18(1(2n1)21(2n+1)2A=18n=11(2n1)218n=11(2n+1)2=18[n=11(2n1)2+n=11(2n)2(n=11(2n+1)2+n=11(2n)2)]=18[n=11n2n=21n2]=18(1)=18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com