Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 45968 by maxmathsup by imad last updated on 19/Oct/18

1)find Σ_(n=1) ^∞   ((cos(nx))/n) and Σ_(n=1) ^∞  ((sin(nx))/n)  2) calculate Σ_(n=1) ^∞  (1/n)cos(((2nπ)/3)) and Σ_(n=1) ^∞  (1/n)sin(((2nπ)/3))

1)findn=1cos(nx)nandn=1sin(nx)n2)calculaten=11ncos(2nπ3)andn=11nsin(2nπ3)

Commented by maxmathsup by imad last updated on 23/Oct/18

1) let f(x)=Σ_(n=1) ^∞  ((cos(nx))/n) and g(x)=Σ_(n=1) ^∞  ((sin(nx))/n) we have  f(x)+ig(x)=Σ_(n=1) ^∞  (e^(inx) /n) =Σ_(n=1) ^∞  (((e^(ix) )^n )/n) =−ln(1−e^(ix) )  =−ln(1−cosx −isinx)=−ln(2 sin^2 ((x/2))−2isin((x/2))cos((x/2)))  =−ln(−i sin((x/2))( e^(i(x/2)) ))=−ln(−i) +ln(sin((x/2)))−i(x/2)  =−ln(e^(−i(π/2)) )−i(x/2) +ln(sin((x/2)))=((iπ)/2)−i(x/2) +ln(sin((x/2)))  =i((π−x)/2) +ln(sin((x/2))) ⇒Σ_(n=1) ^∞ ((cos(nx))/n) =ln(sin((x/2))) and  Σ_(n=1) ^∞  ((sin(nx))/n) =((π−x)/2) .

1)letf(x)=n=1cos(nx)nandg(x)=n=1sin(nx)nwehavef(x)+ig(x)=n=1einxn=n=1(eix)nn=ln(1eix)=ln(1cosxisinx)=ln(2sin2(x2)2isin(x2)cos(x2))=ln(isin(x2)(eix2))=ln(i)+ln(sin(x2))ix2=ln(eiπ2)ix2+ln(sin(x2))=iπ2ix2+ln(sin(x2))=iπx2+ln(sin(x2))n=1cos(nx)n=ln(sin(x2))andn=1sin(nx)n=πx2.

Commented by maxmathsup by imad last updated on 23/Oct/18

2)we have proved that Σ_(n=1) ^∞  ((cos(nx))/n)=ln(sin((x/2)) for x=((2π)/3) ⇒  Σ_(n=1) ^∞  ((cos(((2nπ)/3)))/n) =ln(sin((π/3)))=ln(((√3)/2))=(1/2)ln(3)−ln(2) also we have  Σ_(n=1) ^∞   ((sin(nx))/n) =((π−x)/2) ⇒Σ_(n=1) ^∞  ((sin(((2nπ)/3)))/n) =((π−((2π)/3))/2) =(π/2)−(π/3) =(π/6) .

2)wehaveprovedthatn=1cos(nx)n=ln(sin(x2)forx=2π3n=1cos(2nπ3)n=ln(sin(π3))=ln(32)=12ln(3)ln(2)alsowehaven=1sin(nx)n=πx2n=1sin(2nπ3)n=π2π32=π2π3=π6.

Answered by Smail last updated on 22/Oct/18

p(x)=Σ_(n=1) ^∞ (e^(inx) /n)  ln(1−x)=−Σ_(n=1) ^∞ (x^n /n)  with ∣x∣<1  So  p(x)=−(−Σ_(n=1) ^∞ (((e^(ix) )^n )/n))=−ln(1−e^(ix) )  p(x)=a+ib=−ln(1−e^(ix) )  Σ_(n=1) ^∞ (e^(inx) /n)=Σ_(n=1) ^∞ ((cos(nx))/n)+iΣ_(n=1) ^∞ ((sin(nx))/n)  e^(a+ib) =(1/(1−cos(x)−isin(x)))  e^a cos(b)+ie^a sin(b)=((1−cos(x)+isin(x))/(2(1−cos(x))))  e^a cos(b)=(1/2) and e^a sin(b)=((sin(x))/(2(1−cos(x))))  tan(b)=((sin(x))/(1−cos(x)))  b=tan^(−1) (((sin(x))/(1−cos(x))))  which is b=Σ_(n=1) ^∞ ((sin(nx))/n)=tan^(−1) (((sinx)/(1−cosx)))  and  e^a cos(b)=(1/2)  e^a =(1/(2cos(b)))=(1/2)(√(1+tan^2 (b)))  e^a =(1/2)(√(1+((sin^2 x)/((1−cosx)^2 ))))=(1/2)(√((2(1−cos(x)))/((1−cosx)^2 )))  =((√2)/2)(√(1/(1−cosx))) So  a=ln((1/(√2)))+ln((1/(√(1−cosx))))  a=Σ_(n=1) ^∞ ((cos(nx))/n)=−(1/2)(ln(2)+ln(1−cosx))

p(x)=n=1einxnln(1x)=n=1xnnwithx∣<1Sop(x)=(n=1(eix)nn)=ln(1eix)p(x)=a+ib=ln(1eix)n=1einxn=n=1cos(nx)n+in=1sin(nx)nea+ib=11cos(x)isin(x)eacos(b)+ieasin(b)=1cos(x)+isin(x)2(1cos(x))eacos(b)=12andeasin(b)=sin(x)2(1cos(x))tan(b)=sin(x)1cos(x)b=tan1(sin(x)1cos(x))whichisb=n=1sin(nx)n=tan1(sinx1cosx)andeacos(b)=12ea=12cos(b)=121+tan2(b)ea=121+sin2x(1cosx)2=122(1cos(x))(1cosx)2=2211cosxSoa=ln(12)+ln(11cosx)a=n=1cos(nx)n=12(ln(2)+ln(1cosx))

Commented by Smail last updated on 22/Oct/18

a(x)=−(1/2)(ln(2)+ln(1−cosx))  a(((2π)/3))=Σ_(n=1) ^∞ ((cos(2nπ/3))/n)=−(1/2)(ln(2)+ln(1−cos(2π/3)))  =−(1/2)(ln(2)+ln(1+(1/2)))=−((ln3)/2)  b(x)=tan^(−1) (((sinx)/(1−cosx)))  b(2π/3)=tan^(−1) (((sin(2π/3))/(1−cos(2π/3))))  =tan^(−1) (((√3)/3))=(π/6)+kπ  so Σ_(n=1) ^∞ ((sin(2nπ/3))/n)=(π/6)

a(x)=12(ln(2)+ln(1cosx))a(2π3)=n=1cos(2nπ/3)n=12(ln(2)+ln(1cos(2π/3)))=12(ln(2)+ln(1+12))=ln32b(x)=tan1(sinx1cosx)b(2π/3)=tan1(sin(2π/3)1cos(2π/3))=tan1(33)=π6+kπson=1sin(2nπ/3)n=π6

Terms of Service

Privacy Policy

Contact: info@tinkutara.com