Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 45993 by peter frank last updated on 19/Oct/18

Commented by math khazana by abdo last updated on 20/Oct/18

(d/dx)(e^x^2  )=lim_(h→0)  ((e^((x+h)^2 ) −e^x^2  )/h)  =lim_(h→0)  ((e^(x^2 +2xh+h^2 ) −e^x^2  )/h)  =e^x^2  lim_(h→0)  ((e^(2xh+h^2 ) −1)/h) but   e^(2xh+h^2 ) =1+2xh+h^2  +o(h^2 ) ⇒  ((e^(2xh+h^2 ) −1)/h) =2x +h +o(h) (h→0) ⇒  lim_(h→0)  ((e^(2xh+h^2 ) −1)/h) =2x ⇒  (d/dx)(e^x^2  )=2x e^x^2  .

ddx(ex2)=limh0e(x+h)2ex2h=limh0ex2+2xh+h2ex2h=ex2limh0e2xh+h21hbute2xh+h2=1+2xh+h2+o(h2)e2xh+h21h=2x+h+o(h)(h0)limh0e2xh+h21h=2xddx(ex2)=2xex2.

Answered by tanmay.chaudhury50@gmail.com last updated on 19/Oct/18

y=e^(x^2     )  y+△y=e^((x+△x)^2 )   (dy/dx)=lim_(△x→0)   ((△y)/(△x))        =lim_(△x→0)   ((e^((x+△x)^2 ) −e^x^2  )/(△x))         =lim_(△x→0)   ((e^(x^2 +2x△x+(△x)^2 ) −e^x^2  )/(△x))          =lim_(△x→0)   ((e^x^2  (e^(2x△x+(△x)^2 ) −1))/(△x))          =lim_(△x→0)   e^x^2  ×((e^(2x△x+(△x)^2 ) −1)/(2x△x+(△x)^2 ))×((2x+△x)/1)  let t=2x△x+(△x)^2    when △x→0    t→0            =e^x^2  ×((2x+0)/1)×lim_(t→0) ((e^t −1)/t)             =e^x^2  ×2x×1=2xe^x^2    is answer

y=ex2y+y=e(x+x)2dydx=limx0yx=limx0e(x+x)2ex2x=limx0ex2+2xx+(x)2ex2x=limx0ex2(e2xx+(x)21)x=limx0ex2×e2xx+(x)212xx+(x)2×2x+x1lett=2xx+(x)2whenx0t0=ex2×2x+01×limt0et1t=ex2×2x×1=2xex2isanswer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com