All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 45993 by peter frank last updated on 19/Oct/18
Commented by math khazana by abdo last updated on 20/Oct/18
ddx(ex2)=limh→0e(x+h)2−ex2h=limh→0ex2+2xh+h2−ex2h=ex2limh→0e2xh+h2−1hbute2xh+h2=1+2xh+h2+o(h2)⇒e2xh+h2−1h=2x+h+o(h)(h→0)⇒limh→0e2xh+h2−1h=2x⇒ddx(ex2)=2xex2.
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Oct/18
y=ex2y+△y=e(x+△x)2dydx=lim△x→0△y△x=lim△x→0e(x+△x)2−ex2△x=lim△x→0ex2+2x△x+(△x)2−ex2△x=lim△x→0ex2(e2x△x+(△x)2−1)△x=lim△x→0ex2×e2x△x+(△x)2−12x△x+(△x)2×2x+△x1lett=2x△x+(△x)2when△x→0t→0=ex2×2x+01×limt→0et−1t=ex2×2x×1=2xex2isanswer
Terms of Service
Privacy Policy
Contact: info@tinkutara.com